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Abstract:  

The estimation of the dose of inhaled nanomaterials is of fundamental importance in occupational 

and environmental health. Indeed, the toxicology and risk assessment of inhaled NMs depends on 

deposition rates in various parts of the lung, coupled with clearance/retention rates that depend on 

processes such as physical removal by ciliary clearance, macrophage-mediated clearance and lym-

phatic clearance, as well as dissolution and disintegration. A number of lung dosimetry models have 

been designed to estimate the deposition and retention of inhaled particles, including empirical mod-

els, deterministic models, stochastic statistical models and mechanistic multiple-path models. Vari-

ous assumptions are used in these models, including use of a symmetrical or asymmetrical lung, 

which affects the performance of these models.  This study presents the most recent developments 

of in vivo dosimetry in nanotoxicology, with a focus on the design and modelling approach, and the 

required input data used, as well as verification and validation status of the model. Widely imple-

mented models in nanotoxicology were identified and analyzed, i.e. the Multiple Path Particle Do-

simetry (MPPD) model, International Commission on Radiological Protection (ICRP) models, the 

National Council on Radiation Protection and Measurement (NCRP) model, the Exposure Dose 

Model (ExDoM) and Integrated Exposure and Dose Modeling and Analysis System (EDMAS).  
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1. Introduction 

Engineered NMs (ENMs) possess unique chemical, physical and biological proper-

ties only exhibited at the nanoscale (less than 100 nanometres) and not in bulk. Conse-

quently, these materials have many applications in cosmetics, food, pesticides, medicines, 

electronics, clothes, construction materials etc. However, there are concerns over toxico-

logical risks to workers, consumers and the environment. ENMs have been linked with 

an array of toxicological effects including inflammation [1, 2], DNA damage [3-5], cardi-

ovascular disease [6].  Therefore, risk assessment is conducted for ENMs using both in 

vitro and in vivo methods.  

Dosimetry measures or estimates the internal dose of a substance in individuals / 

populations to provide a link between an external exposure and a biological response [7] 

. Laboratory animals are often used in inhalation toxicological and pharmacological stud-

ies, where the dose-response analysis is important to estimate the ENMs that are actually 

deposited in the lungs of these species and humans. Computer models of dosimetry can 

supplement or alleviate extensive use of experimental studies. However, the lack of bio-

logically-relevant methods result in many inconsistencies found in nanotoxicological 
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studies [8-10]. Consequently, a number of lung dosimetry models have been developed 

to estimate the fraction of particles of a given size, shape and density that is deposited in 

a region of the respiratory tract. However, the dose of ENMs in a particular site of the lung 

also depends on the clearance kinetics of the NM.  Some lung dosimetry models also in-

clude retention of deposited ENMs, which depends on the susceptibility of NM to clear-

ance processes that include solubility, ciliary clearance, macrophage-mediated and lym-

phatic clearance.  This study presents the most recent developments of lung dosimetry 

in nanotoxicology.   

 

2. Lung dosimetry modelling of nanomaterials 

One must assess deposition of ENMs in the respiratory system, their subsequent fate, 

and exposure to extra-pulmonary tissues.  Following inhalation, ENMs deposit in the res-

piratory tract via diffusion as they collide with air molecules. Important mechanisms in the 

deposition of larger particles (e.g. inertial impaction, gravitational settling, and interception) 

do not contribute significantly to inhaled ENM deposition [11].  The significance of each 

mechanism depends on particle characteristics, location in the lung and breathing rates.  

Lung deposition models require information on lung morphometry/physiology, air-

flow patterns, and physico-chemical characteristics of the particles.  Morphometric meas-

urements have been conducted in various animals including humans [12-15] , dogs [16, 17] 

rats [17, 18] [and hamsters [17].  In addition, empirical (in vitro) representations of the lung 

have been developed from materials such as silicone rubber [19, 20] and acrylic (Veroclear) 

[21]. These morphometric measurements and cast replicas have been invaluable in the de-

velopment of many lung dosimetry models, i.e. deterministic, single-path and stochas-

tic/mechanistic multiple-path models.   

Empirical models are based on equations that are derived from experimental data. 

Models developed from this “top-down” approach have a limited scope since the empirical 

data is only relevant to the range of the input data and experimental conditions.  However, 

these models do not require specialized computer programs since they comprise of simple 

mathematical relationships. Stahlhofen, Rudolf [22] found a poor agreement among da-

tasets for thoracic regional deposition but a good agreement between extrathoracic deposi-

tion data, for both oral and nasal breathing, and for total deposition.  

 Deterministic lung models use ‘bottom-up’ approaches to integrate physico-chemical 

data, morphometric data and relevant deposition and clearance mechanisms to estimate the 

dose of NMs deposited and retained in the lung.  In simple deterministic models, succes-

sive conductive airways in the lower (tracheobronchial region are represented as simple 

symmetrical structures comprising of a set of straight cylindrical tubes, or bifurcating Y-

shaped units, with branching at fixed angles into distal tubes [23], while the alveoli are ap-

proximated by truncated spheres. Each airway receives identical deposition fractions since 

the inhaled airflow and particles are equally distributed among all airways in a given gen-

eration.  In these symmetric deterministic models, each inhaled particle follows the same 

path and the models are referred to as ‘‘single-’’ or ‘‘typical-”path’ models [24].  Such de-

terministic symmetric lung models do not take into consideration the asymmetric branching 

patterns of airways that lead to inter-individual variability of particle deposition among hu-

mans [25].  Therefore, there have been efforts to develop mechanistic and stochastic lung 

dosimetry models to obtain more realistic and reliable results. For example, a stochastic 

asymmetric lung model was developed Koblinger [23] by statistically analyzing data, i.e. 

the frequency distributions and correlations among several bronchial and bronchiolar air-

way parameters such as airway diameters, lengths, branching and gravity angles. While 

simple deterministic models use a single path that defines average lung conditions, stochas-

tic models do not assign the morphometric parameters but are allowed to vary in a random 

manner, and thereby take into consideration the asymmetric branching of airways that leads 

to inter-individual variability among humans [26].  The lung morphometric parameters are 



Environ. Sci. Proc. 2022, 4, x FOR PEER REVIEW 3 of 4 
 

3 

 

described by statistical distributions using probabilistic or Monte Carlo techniques to ac-

count for variations in lung asymmetry and trajectory [27].  

Computational modelling of the deposition of nano-objects with three external na-

noscale dimensions, i.e. NMs in the respiratory tract involves formulation of mathematical 

equations describing physical and chemical processes, specification of the initial and bound-

ary conditions, and determinations of the solutions of equations for the specified geometry 

[28]. Without the need of empirical or semi-empirical deposition correlations, computa-

tional fluid dynamics (CFD) uses general governing transport equations to predict deposi-

tion at a very localized level [29-31].  The disadvantages of CFD include the complexity of 

the computational models, the required computational time and the required computer soft-

ware, hardware and expertise.  

Computational approaches either use Eulerian concepts, involving the tracking of an 

ensemble or concentration of particles, or Lagrangian modelling concepts, where single par-

ticles are tracked. The former approach is more suitable for high concentrations of smaller 

particles, while the latter is preferable for fewer and larger particles [32].   

Lung dosimetry of inhaled ENMs also includes clearance, which depends on the region 

where the ENMs are deposited and the retention characteristics of the specific ENMs. Clear-

ance mechanisms in the lung include mucociliary transportation, phagocytosis by pulmo-

nary alveolar macrophages and dissolution followed by absorption into the systemic circu-

lation through diffusional and pinocytotic processes. In the conducting airways, the main 

clearance mechanism for insoluble particles is the mucociliary escalator, where mucus cre-

ated via ciliary beating constantly flows [33]. In the upper generation airways, coughing 

appears to be an effective removal mechanism for deposited ENMs. In the alveolar region, 

insoluble ENMs are cleared by alveolar macrophages. However, alveolar macrophage-me-

diated clearance processes among mammalian species differ significantly [34].  

 

3. Lung dosimetry models widely implemented in nanotoxicology  

    Models have been developed to estimate the in vivo deposition and retention 

(clearance) of inhaled particles.  The Multiple Path Particle Dosimetry (MPPD) model can 

estimate the deposition and clearance of inhaled monodisperse and polydisperse particles 

(0.01 - 20 µm) in various respiratory zones of humans [35, 36], as a function of particle 

concentrations, breathing patterns, airway regions, and generation number [37], where the 

clearance mechanisms include mucociliary transportation, phagocytosis by pulmonary 

alveolar macrophages and dissolution (followed by absorption into the systemic 

circulation). Recent versions of the MPPD model can be implemented for ENMs with fast 

dissolution rates [38].  

   The MPPD has undergone verification and validation, e.g., two rodent studies 

indicated good agreement between experimentally determined deposition values and 

those predicted [35, 39]. The model was made publicly available and used widely to 

predict the lung deposition and retention of various ENMs [40-44].  A hygroscopic 

particle growth model was incorportaed into the MPPD model for the prediction of the 

deposition of hygroscopic particles [45]. The MPPD model has been combined to extrapo-

late air concentrations corresponding to the in vitro doses to human exposure levels [46]. 

The MPPD model has also been linked with PBPK model to assess biodistribution of ENMs 

[47-49].   

     The International Commission of Radiological Protection (ICRP) developed semi-

empirical lung dosimetry models for inhaled radioactive particles for adult Caucasian 
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males, e.g. the 1960 version, the 1979 version and the commonly known ICRP66 or the 

Human Respiratory Tract Model (HRTM) published in 1994 [50]. The ICRP models were 

derived from experimental deposition data of 1-10 µm particles as well as mathematical 

expressions for calculating regional deposition in human airways. The three ICRP models 

use different clearance processes. While the 1959 model does not include any dissolution 

or absorption to the systemic circulation, the 1994 model includes dissolution and 

absorption into the systemic circulation [50]. In a validation study, the ICRP model was 

shown to be within a factor of 2 from actual measurements and the ICRP66 consistently 

overestimated bronchial concentrations [51]. As compared to the MPPD, different 

deposition rates were obtained uisng the ICRP model for particles less 400nm [52]. Since 

the ICRP models are semi-empirical, they cannot be applied outside of their scope of adult 

Caucasian males.  

    The National Council on Radiation Protection and Measurements (NCRP) developed 

a mechanistic lung dosimetry model to address the ICRP shortfalls.  Clearance of matter 

from the airways results from the mechanical processes (e.g. transport of intact particles) 

and absorptive processes (e.g. dissolution and transport) [53]. Each region is assigned an 

effective clearance rate, which is based on a first-order differential equation that assumes 

that the rate of clearance is proportional to the amount radioactive material present. The 

model software requires the name of the substance, which is then linked to a pre-pro-

grammed clearance factors such as dissolution rate constants or dissolution rates [53]. A 

higher prediction of tracheobronchial deposition and a lower pulmonary deposition was 

reported by the NCRP models than the ICRP 1994 [54].  The NCRP noted the needs for 

the inclusion of ENMs that reach the systemic circulation, which are expected to have dif-

ferent uptake, distribution and retention characteristics compared to soluble radionuclides 

for which the model was designed [55]. The model also needs to be updated to include 

accumulation of ENMs in secondary organs following translocation.  

    Since the MPPD, ICRP and NCRP models can only be utilized to calculate deposition 

and clearance from constant exposure, the Exposure Dose Model (ExDoM) was developed 

to enable estimation of deposition and clearance resulting from variable continuous expo-

sure conditions [56].  The model operates on Windows computers and is available on re-

quest from the developers. EXDoM utilizes semi-empirical approaches similar to the ICRP 

models and can be utilized to calculate clearance for soluble as well as relatively insoluble 

particles.  The deposition module of the model was successfully validated against exper-

imentally derived values as well as the ICRP66 model and the MPPD model [56]. ExDoM 

was utilized to assess the exposure to particulate matter-bound metals among landfill 

workers [57].   

    The integrated Exposure and Dose Modeling and Analysis System (EDMAS) was also 

developed to address the inherent shortcomings of the MPPD, ICRP and NCRP models.  

However, while ExDoM deals with variable continuous exposure conditions, EDMAS has 

the capacity to address time-dependent changes in particle size and composition resulting 

from nucleation, condensation, coagulation, gas phase chemical reaction [58, 59]  The 

model was evaluated to be in good agreement with results from experimental data as well 
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as results from other models [59]. However, while the processes that may affect deposition 

(nucleation, condensation, coagulation and diffusion) are clearly addressed, the processes 

that affect clearance are not well articulated [60].  One disadvantage of the model is that, 

as a mechanistic model, it requires many physiology parameters. 

 In addition to the models discussed in the previous paragraphs, there is need to as-

sess the applicability of models designed for microparticles, such as those by Tian, Longest 

[61], Inthavong, Choi [62], Rahimi-Gorji, Gorji [30], Longest, Tian [63], Inthavong, Tu [64], 

Tian, Hindle [65] and Kolanjiyil and Kleinstreuer [31], to NMs. Unfortunately, the availa-

bility of some these models in computer-executable software is not certain.   

    In summary, different in vivo dosimetry models have different designs, structures, un-

derlying assumptions and capacities to estimate the dose of inhaled ENMs.  These models 

have been integrated with other models, where the merits and drawbacks were high-

lighted and discussed. 
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