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Abstract: Wildfires emit large quantities of air pollutants into the atmosphere. As wildfires increase 

in frequency, intensity, duration, and coverage area, such emissions have become a significant 

health hazard for residential populations, particularly the vulnerable groups. This health hazard is 

exacerbated by two factors: first, wildfires are expected to increase in frequency as a result of climate 

change; and second, human health is adversely impacted by fine particulate matter produced from 

wild fires. Recent toxicological studies suggest that wildfire particulate matter may be more toxic 

than equal doses of ambient PM2.5. The role of ammonia emissions from wildfires on PM2.5 is 

examined. The impact of poor air quality on human health is examined, and some strategies are 

discussed to forecast the burden of diseases associated with exposures to wildfire events, both short- 

and long-term, and help develop mitigation strategies. 
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1. Introduction 

During the last few decades wildfire activity has been increasing. Moreover, climate 

change will enhance wildfire activity; resulting in increased human exposure to wildfire 

pollutants [1]. Acute and chronic exposures to wildfire particulate matters (PM) are 

associated with premature mortalities, predominantly cardiovascular and respiratory [2] 

Recent evidence suggests that PM2.5 from wildfires causes enhanced adverse impact on 

human health when compared to PM2.5 exposure from other sources [3]. Increased daily 

mortality have been observed from air pollution exposure associated with dust storms 

and biomass burning [4,5]. Wildfire smoke contributes to high levels of air pollutants 

which are risk factors for adverse cardiovascular effects, especially in vulnarable 

populations, and significantly contribute to morbidity and mortality in communities with 

health disparity especially minority population [6]. 

Research is needed for human health exposure studies from wildfire [7]. The role of 

climate change on human health impacts in the future needs to be examined which will 

allow mitigation policies. To improve our ability to predict the public health burden of 

wildfire emissions, we need to forecast air pollutant and particulate emissions from active 

fires. Emissions depend on a number of variables, such as burned area, biomass, 

meteorology, ground conditions, soil moisture, etc. However, most of these variables are 

difficult to measure or even forecast for active fires.  
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2. Results 

Pollutant emissions e.g. NH3 and PM2.5 emissions from wildfires are calculated using 

Equation (1) [8–11]:  

Ei = B(x) ∗ BA(x, t) ∗ EFj ∗ FB, (1) 

Where: 

Ei is the species’ emissions (g),  

B(x) is the biomass loading at location x (g/m2),  

BA(x,t) is the burned area at location x and time t (m2),  

EFj is the emission factor for species j (g species g-1 biomass burned), and  

FB is the fraction of biomass burned.  

Wiedinmyer et al., (2011) have published the biomass loading (B(x)) values for 

different regions [11]. Collection 5 MODIS Global Land Cover Type product (MCD12Q1; 

500 m) Version 6 for 2018 were utilized to estimate land cover classification [12]. Burn 

area, (BA(x,t)), is determined using the Moderate Resolution Imaging Spectroradiometer 

(MODIS)/Aqua+Terra [13]). Wiedinmyer et al., (2006, 2011) provide the fraction of 

biomass burned (FB). This methodology is summarized by [14,15]. The pollutant emission 

average emission factors (EF) for example PM2.5 and NH3 are obtained from the literature 

[10,11]. The most important parameter in estimating wildfire emissions (Equation (1)) is 

burn area [16]. 

Since ammonia is a precursor in the formation of PM2.5, we observe (Figure 1) that 

the emission patterns of ammonia and PM2.5 are similar. A plot of ammonia emissions 

versus PM2.5 emissions (Figure 2) in Southeast Australia provides the role of ammonia in 

secondary PM2.5 formation in the wildfire. The linear equation: y = 8.94 × 106 + 11.62x with 

Adjusted R-squared: 0.95 further supports this conclusion. Moreover, the intercept of the 

linear regression provides insight into the possible background PM2.5 emission of 8.94 × 

106 kilograms per year. 

On a US national scale (CONUS) ammonia emissions from wild fires are estimated 

approximately 5.4 × 108 ± 3.3 × 108 kg/year for 2005–2015; and the emissions of air 

pollutants have cotinued to increase. Moreover, the average annual PM2.5 emissions (both 

primary and secondary) from biomass burning on a US national scale emission in 2014 is 

approximately 1507 × 106 kilograms per year. In general, NH3 emissions and PM2.5 

emissions (Figure 3) reach their maxima in the summer months. Summer months, in 

general, are dryer and warmer and are therefore conducive to wildland fire activities 

coupled with covering a larger burn area especially in the Western US. 
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Figure 1. Daily PM2.5 emissions and NH3 emissions in Southeast Australia during (29 

December 2019—4 January 2020). The circles represent PM2.5 and NH3 emissions as kg 

per day. The black vertical bars in the figure represent ± 1SD. (Source: [16])

. 

Figure 2. Daily NH3 vs PM2.5 emissions in Southeast Australia during the study period. (Source: 

[16]). Linear equation: y = 8.94x × 106 + 11.62x with Adjusted R-squared: 0.95. 
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Figure 3. Monthly PM2.5 emissions (wildfire + prescribed burn) for the CFIRE inventory. (Source: 

[17]). Total emissions in 2014 were approximately 1507x106 kilograms per year. 

3. Discussion 

Health outcomes in residential population: Wildfire emissions have impacts on 

human health. There needs to be statistical analysis of the patterns of mortality and 

morbidity for respiratory, cardiovascular, neurocognitive, chronic kidney, and other 

diseases in counties affected by wildfires using the Centers for Disease Control and 

Prevention Wide-ranging OnLine Data for Epidemiologic Research (CDC WONDER) 

database and the Agency for Healthcare Research and Quality datafiles, by looking into 

the months/years when wildfires were the most active in respective regions. Using these 

results, researchers can develop the strategy on health data to be included in the 

forecasting model of wildfires to predict health outcomes in most vulnerable population 

groups and to forecast the burden of diseases associated with exposures to wildfire events, 

both short- and long-term. This work also has added significance for the eventual 

consideration of standards other than the mass-based PM2.5 NAAQS approach. 

Statistical forecasting for future wildfire emissions: The physicochemical model in 

Equation (1) cannot be used for forecasting future emissions, as the explanatory variables 

cannot be measured for active wildfires. Expensive data collection procedures (e.g., using 

drones) are necessary for existing scientific models for predicting wildfire emissions [18–

20]. Furthermore, these models do not have a mechanism to learn from past wildfire data. 

These issues make such models impractical for forecasting emissions in real-world 

scenarios. Physical models of wildland fire spread have also been developed [21]. These 

physical models and typically include equations describing combustion chemistry as well 

as heat transfer conservation laws. Due to the high complexity and prohibitive 

computational cost of running these models, their use is generally limited to research 

purposes. For large wildfires that burn for a long time and over a large area the use of 

such models is not practically feasible.  

Instead, a promising approach is to use deep learning-based model for spatio-

temporal forecasting of future emissions from active wildfires. This can be accomplished 

by merging recurrent neural networks, or RNNs, with convolutional neural networks, or 

CNNs. RNNs enable efficient modeling of time series data by propagating and updating 

information from previous time steps using non-linear, differentiable transformations 

[22]. On the other hand, CNNs, which are regularized versions of multilayer perceptrons, 

are able to capture spatial information. CNN+RNN architectures have proven to be 

successful in a number of similar tasks including precipitation forecasting [23], traffic 
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prediction in transportation networks [24], music classification [25], and video frame 

prediction [26]. 

4. Conclusions 

The research will improve our understanding of wildland fire impacts on public and 

environmental health and will inform public health strategies to reduce associated risks. 

Anthropogenic emissions of NOx and SO2 have declined over the U. S. during the past 20 

years as a result of the Clean Air Act and its amendments, resulting in significant 

improvements in air quality. However, the increase of wildfire frequencies and intensities 

threatens to reverse these achieved gains especially in emissions of ammonia and PM2.5. 

The exposure of PM2.5 and other wildfire air contaminants associated with wildfire on 

respiratory, cardiovascular, and other disease-specific impacts will provide information 

that can be used by local healthcare and public health specialists to target the vulnerable 

groups. 
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