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Abstract 
A new set of nucleotide-based biomacromolecular descriptors are presented. This 

novel approach to biomacromolecular design from a linear algebra point of view is relevant 
to nucleic acids QSAR (Quantitative Structure-Activity Relationship) studies. These bio-
macromolecular indices are based on the calculus of bilinear maps on ℜ n [ ),( mmkm yxb : 
ℜ n xℜ n →ℜ ] in canonical basis. Nucleic acid’s bilinear indices are calculated from kth 
power of non-stochastic and stochastic nucleotide’s graph–theoretic electronic-contact 
matrices, k

mM  and k
m

s M , respectively. That is to say, the kth non-stochastic and stochastic 
nucleic acid’s bilinear indices are calculated using k

mM  and k
m

s M  as matrix operators of 
bilinear transformations. Moreover, biochemical information is codified by using different 
pair combinations of nucleotide-base properties as weightings (experimental molar 
absorption coefficient 260∈  at 260 nm and PH = 7.0, first ( 1EΔ ) and second ( 2EΔ ) single 
excitation energies in eV, and first (f1) and second (f2) oscillator strength values (of the first 
singlet excitation energies) of the nucleotide DNA-RNA bases. As example of this 
approach, an interaction study of the antibiotic Paromomycin with the packaging region of 
the HIV-1 Ψ-RNA have been performed and it have been obtained several linear models in 
order to predict the interaction strength. The best linear model obtained by using non-
stochastic bilinear indices explains about 91% of the variance of the experimental Log K (R 
= 0.95 and s = 0.08x10-4M-1) as long as the best stochastic bilinear indices-based equation 
account for 89% of the Log K variance (R = 0.94 and s = 0.10 x10-4M-1). The Leave-One-
Out (LOO) press statistics, evidenced high predictive ability of both models (q2 = 0.86 and 
scv = 0.09×10-4M-1 for non-stochastic and q2 = 0.79 and scv = 0.11 x10-4M-1 for stochastic 
bilinear indices). The nucleic acid’s bilinear indices based models compared favourably 
with other nucleic acid’s indices based approaches reported nowadays. These models also 
permit the interpretation of the driving forces of the interaction process. In this sense, 
developed equations involve short-reaching (k ≤ 3), middle-reaching (4 < k < 9) and far-
reaching (k = 10 or greater) nucleotide’s bilinear indices. This situation points to electronic 
and topologic nucleotide’s backbone interactions control of the stability profile of 
Paromomycin-RNA complexes. Consequently, the present approach represents a novel and 
rather promising way to theoretical-biology studies. 
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INTRODUCTION 

The knowledge about the functions of an huge amounts of nucleotide and amino-acid 

sequences, generated from the sequencing projects in recent years, highlights among the 

challenges to modern biology (Benson et al., 2000; Sakharkar et al., 2000a; Sakharkar et 

al., 2000b; Saxonov et al., 2000; Schisler and Palmer, 2000 ; Yuan, 1999). This data 

expects for capable methods to translate the information into biological significance (Hua 

and Sun, 2001). 

At the present time, the study of the interactions of drugs with biomolecules is a field 

of lively research (González-Díaz et al., 2003b). Specifically, design of molecules that bind 

RNA fragment is currently an interesting and important issue in drug discovery (Hamasaki 

and Akihiko, 2001). In this respect, the combination of experimental techniques with the 

modern Bioinformatics has arise as a promising alternative (González-Díaz et al., 2003b). 

In this sense, the foot-printing techniques have proven to be an important experimental 

method for the discovery of significant processes in molecular biology and specifically the 

field of genomics (Brenowitz et al., 1986; Galas and Schmithz, 1978; Henn et al., 2001; 

Ozoline et al., 2001; Tullius, 1989).  

The interactions of antibiotics (aminoglycosides) with the packaging region of HIV 

Type-1 seems to be a promising route for antiviral discovery (Sullivan et al., 2002). 

Aminoglycoside drugs are cationic natural products that interact with RNA (Gale et al., 

1981). Some structurally related aminoglycoside antibiotics bind RNA specifically and 

disturb their activity (Hamasaki and Akihiko, 2001). For example, the bactericidal effects 

inherent in these compounds stem from their ability to block protein synthesis by binding to 

the A-site on ribosomal RNA (Lynch et al., 2000). Moreover, aminoglycoside analogues 



 

can be used to treat certain diseases. For instance, the genetic information in HIV and 

various tumour viruses is in the form of RNA (Weiss et al., 1984). Since the genomes of 

these viruses are likely to have unique structures, it may be possible to design agents that 

selectively block virus proliferation by targeting a specific site on RNA (Wilson and Li, 

2000). 

Increasingly, modern bioinformatics approaches have been used to provide structural 

information about bio-molecules and its interaction with drugs (Österberg et al., 2002). 

Several computational drugs design methods have been developed to research drug-

biomolecules interactions. For instance, MARCH-INSIDE methodology has been 

generalized to protein structure/property relationships studies (Gonzalez-Diaz and Uriarte, 

2005; Gonzalez-Diaz et al., 2005; Ramos de Armas et al., 2004) and the research in nucleic 

acid-drug interactions, respectively (González-Díaz et al., 2003a; González-Díaz et al., 

2003b). 

 On the other hand, a novel scheme to the rational in silico molecular design (or 

selection/identification of drugs-like compounds) and to QSAR/QSPR (Quantitative 

Activity/Structure–Property Relationships) studies has been introduced by our group, the 

so-called TOpological MOlecular COMputer Design (TOMOCOMD) (Marrero-Ponce and 

Romero, 2002). This method generates molecular descriptors (MDs) based on the Discrete 

Mathematic and Linear Algebra Theory. In this sense, atom, atom-type and total quadratic 

and linear molecular indices have been defined in analogy to the quadratic and linear 

mathematical maps (Marrero-Ponce, 2003; Marrero Ponce, 2004). This approach has been 

successfully employed in QSPR and QSAR studies (Marrero-Ponce, 2003; Marrero-Ponce, 

2004b; Marrero-Ponce et al., 2003; Marrero-Ponce et al., 2004a; Marrero-Ponce et al., 

2004b; Marrero-Ponce et al., 2005d; Marrero-Ponce et al., 2005e; Marrero-Ponce et al., 



 

2005g; Marrero-Ponce et al., 2004e; Marrero Ponce, 2004; Marrero Ponce et al., 2004), 

including studies related to nucleic acid–drug interactions (Marrero-Ponce et al., 2004d). 

The TOMOCOMD–CARDD (acronym of the Computed-Aided-Rational-Drug 

Design) strategy is very useful for the selection of novel subsystems of compounds having 

a desired property/activity (Marrero-Ponce et al., 2005d; Marrero-Ponce et al., 2005g; 

Marrero-Ponce et al., 2004e), which can be further optimized by using some of the many 

molecular modelling methods available for medicinal chemists. The method has also 

demonstrated flexibility in relation to many different problems. In this sense, the 

TOMOCOMD–CARDD approach has been applied to the fast-track experimental 

discovery of novel antihelmintic compounds (Marrero-Ponce et al., 2005d; Marrero-Ponce 

et al., 2005g; Marrero-Ponce et al., 2004e). The prediction of the physical, chem-physical 

and chemical properties of organic compounds is a problem that can also be addressed 

using this approach (Marrero-Ponce, 2003; Marrero-Ponce, 2004b; Marrero-Ponce et al., 

2004a). Codification of chirality and other 3D structural features constitutes another 

advantage of this method (Marrero-Ponce et al., 2004b). This latter opportunity allows the 

description of the significance interpretation and the comparison to other molecular 

descriptors (Marrero-Ponce, 2004b; Marrero Ponce, 2004). Additionally, promising results 

have been found in the modeling of the interaction between drugs and HIV packaging-

region RNA in the field of bioinformatics by using TOMOCOMD-CANAR (Computed-

Aided Nucleic Acid Research) approach (Marrero-Ponce et al., 2004d; Marrero Ponce et 

al., 2005). Finally, an alternative formulation of our approach for structural characterization 

of proteins was carried out (Marrero-Ponce et al., 2005b; Marrero-Ponce et al., 2004c). 

These extends methodologies [TOMOCOMD-CAMPS (Computed-Aided Modelling in 

Protein Science)] which were used to encompass protein stability studies—specifically how 



 

alanine scan on Arc repressor wild-type protein affects protein stability—by means of a 

combination of quadratic and protein linear indices, correspondingly, (bio-macromolecular 

descriptors) and statistical (linear and nonlinear models) methods (Marrero-Ponce et al., 

2005b; Marrero-Ponce et al., 2004c). 

More recently, some of present authors also proposed new MDs in analogy to the 

bilinear mathematical forms in ℜ n in canonical basis sets (Marrero-Ponce et al., 2008b), 

namely atom-based non-stochastic and stochastic bilinear indices (Castillo-Garit et al., 

2007; Marrero-Ponce et al., 2008a; Marrero-Ponce et al., 2008b; Marrero-Ponce et al., 

2007; Marrero-Ponce et al., 2006b). The calculation of these novel sets of atom-level MDs 

can also be carried out employing our in house TOMOCOMD-CARDD program (Marrero-

Ponce and Romero, 2002). The computation of the non-stochastic and stochastic bilinear 

indices is develop by using the kth “nonstochastic and stochastic atom(atomic nuclei)-based 

graph–theoretical electronic-density matrices” Mk and Sk, correspondingly, as matrices of 

the mathematical forms (Castillo-Garit et al., 2007; Marrero-Ponce, 2004a; Marrero-Ponce, 

2004b; Marrero-Ponce et al., 2005a; Marrero-Ponce et al., 2008a; Marrero-Ponce et al., 

2008b; Marrero-Ponce et al., 2007; Marrero-Ponce et al., 2005h; Marrero-Ponce et al., 

2006b; Montero-Torres et al., 2006).These matricial operators are graph-theoretical 

electronic-structure models, like the ‘‘extended Hückel MO model.’’ The M1 matrix 

considers all valence-bond electrons (σ- and π-networks) in one step, and their power k (k = 

0, 1, 2, 3,...) can be considered as an interacting-electronic chemical-network in step k. The 

present approach is based on a simple model for the intramolecular (stochastic) movement 

of all outer-shell electrons. The theoretical scaffold of these atom-based bilinear maps and 

their use to represent small-to-medium size organic chemicals as well as QSAR and drug 

design studies has been explained in some detail elsewhere (Castillo-Garit et al., 2007; 



 

Marrero-Ponce et al., 2008a; Marrero-Ponce et al., 2008b; Marrero-Ponce et al., 2007; 

Marrero-Ponce et al., 2006b).  In this connection, these new MDs have also been useful for 

the selection of novel molecular subsystems having a desired property/activity. For 

instance, they were successfully applied to the virtual screening (computational discovery) 

of novel trichomonacidals(Marrero-Ponce et al., 2006b) and tyrosinase inhibitors (Marrero-

Ponce et al., 2007). Thus it is desirable to also to extend the already defined atom-based 

(atom-level) bilinear indices to bilinear index for nucleotide, and nucleotide-type as well as 

for whole nucleic acid. 

Therefore, describing an extended TOMOCOMD-CANAR approach to account for 

RNA structure, by mean of bilinear forms, constitutes the main aim of this paper. In the 

present study, we propose a nucleotide, nucleotide-type and total definition of non-

stochastic and stochastic nucleic acid bilinear indices in analogy to the bilinear 

mathematical maps. Besides, the present work is focused on developing QSPRs to predict 

the affinity with which paromomycin binds to the HIV-1 Ψ-RNA packaging region and 

compare our results with other bio-chem-informatic methods previously reported. 

 

2. MATHEMATICAL DEFINITION  

In previous publications, one of the present authors (M-P,Y) of this work describes 

remarkable features concerned with the theory of 2D atom-based TOMOCOMD-CARDD 

MDs (Castillo-Garit et al., 2007; Marrero-Ponce, 2004a; Marrero-Ponce, 2004b; Marrero-

Ponce et al., 2005a; Marrero-Ponce et al., 2008a; Marrero-Ponce et al., 2008b; Marrero-

Ponce et al., 2007; Marrero-Ponce et al., 2005h; Marrero-Ponce et al., 2006b; Montero-

Torres et al., 2006). This method codifies the molecular structure by means of mathematical 

quadratic, linear and bilinear transformations. In order to calculate these algebraic maps for 



 

a molecule, the atom-based molecular vector, x (vector representation) and kth “non-

stochastic and stochastic graph–theoretic electronic-density matrices”, Mk and Sk 

correspondingly (matrix representations), are constructed (Casañola-Martin et al., 2006; 

Marrero-Ponce, 2003; Marrero-Ponce, 2004b; Marrero-Ponce et al., 2005a; Marrero-Ponce 

et al., 2003; Marrero-Ponce et al., 2004a; Marrero-Ponce et al., 2005c; Marrero-Ponce et 

al., 2005d; Marrero-Ponce et al., 2005e; Marrero-Ponce et al., 2005f; Marrero-Ponce et al., 

2006a; Marrero-Ponce et al., 2005g; Marrero-Ponce et al., 2004e; Marrero-Ponce et al., 

2005h; Marrero Ponce, 2004; Marrero Ponce et al., 2004; Meneses-Marcel et al., 2005a; 

Meneses-Marcel et al., 2005b; Montero-Torres et al., 2005; Montero-Torres et al., 2006). In 

connection with, atom-based quadratic and linear indices were recently extended to 

structural codification and biological properties prediction of biopolymers (Marrero-Ponce 

et al., 2004c; Marrero Ponce et al., 2005) by using amino-acid or nucleotide-adjacency 

relationships and chemical-information codification as it corresponds. Here, we will extend 

this mathematical approach but by using bilinear maps. Therefore, the structure of this 

section will be as follows: 1) a background in nucleotide-based macromolecular vector and 

non-stochastic and stochastic nucleotides’s graph–theoretic electronic-contact matrices will 

be described in the next subsections (2.1 and 2.2, respectively), and 2) an outline of the 

mathematical definition of bilinear maps and a definition of our procedures will be develop 

in subsections 2.3 and 2.4, correspondingly.   

2.1. Chemical Information and Nucleotide-based Macromolecular Vector 

In analogy to the molecular vector x  used to represent organic molecules (Marrero-

Ponce et al., 2004d; Marrero Ponce et al., 2004) we introduce here the nucleotide based 

macromolecular vector ( mx ). The components of this vector are numeric values, which 



 

represent a certain nitrogenous base property. These properties characterize each kind of 

nucleotide (nitrogenous base) within a nucleic acid. Such properties can be experimental 

molar absorption coefficient 260∈  at 260 nm and PH = 7.0, first ( 1EΔ ) and second ( 2EΔ ) 

single excitation energies in eV, and first (f1) and second (f2) oscillator strength values (of 

the first singlet excitation energies) of the nucleotide DNA-RNA bases, and so on 

(Pogliani, 2000). For instance, the f1 (B) property of the DNA-RNA bases B takes the values 

f1 = 0.28 for adenine, f1 (G) = 0.20 for guanine, f1 (U) = 0.18 for uracile, and so on (Pogliani, 

2000). Table 1 depicts nucleotides (bases) descriptors properties for DNA-RNA bases.  

Table 1 comes about here (see end of the document) 

Thus, a RNA (or DNA) having 5, 10, 15,..., n nucleotides can be represented by means 

of vectors, with 5, 10, 15,..., n components, belonging to the spaces  ℜ 5, ℜ 10, ℜ 15,...,ℜ n, 

respectively. Where n is the dimension of the real sets (ℜ n).   

This approach allows us encoding RNA sequences such as 5’-AGCGCCU- 3’ through 

out the macromolecular mx = [0.28 0.20 0.13 0.20 0.13 0.13 0.18], in the f1-scale (see Table 

1 for more details). This vector belongs to the product space ℜ 7. The use of other scales 

defines alternative macromolecular vectors. 

Now, if we are interested to codify the chemical information by means of two different 

macromolecular vectors, for instance, mx = [xm1,…, xmn] and my = [ym1,…, ymn]; then 

different combinations of macromolecular vectors ( mx ≠ my ) are possible when a weighting 

scheme is used. In the present report, we characterized each nucleotide with the chem-

physical parameters shown in Table 1. From this weighting scheme, ten (or twenty if mx w-

my z ≠ mx z- my w) combinations (pairs) of macromolecular vectors ( mx , my ; mx ≠ my ) can be 



 

computed, mx f1- my  f2, mx  f1- my 260∈ , mx  f1- my E1, mx  f1- my E2, mx  f2- my 260∈ , mx  f2- my E1, mx  

f2- my E2, mx 260∈ - my E1, mx 260∈ - my E2, mx E1- my E2. Here, we used the symbols mx w- my z, 

where the subscripts w and z mean two nitrogenous-base properties from our weighting 

scheme and a hyphen (-) expresses the combination (pair) of two selected nucleotide-label 

physic-chemical properties.  

In order to illustrate this, let us consider the same RNA sequence mentioned previously 

and the following weighting scheme: f1 and f2 ( mx f1- my f2 = mx  f2- my  f1). The next 

macromolecular vectors mx = [0.28 0.20 0.13 0.20 0.13 0.13 0.18] and my = [0.54 0.27 0.72 

0.27 0.72 0.72 0.37] are obtained when we use f1 and f2 as chem-physical weights for 

codifying each nucleotide in the example RNA fragment in mx and my vectors, respectively. 

(See Table 2 for more details). 

Table 2 comes about here (see end of the document) 

2.2. Background in non-stochastic and stochastic nucleotide’s graph–theoretic 

electronic-contact matrices.  

In molecular topology, molecular structure is expressed, generally, by the hydrogen-

suppressed graph. That is, a molecule is represented by a graph. Informally a graph G is a 

collection of vertices (points) and edges (lines or bonds) connecting these vertices (I. 

Gutman, 1986; Rouvray, 1976; Trinajstić, 1983). In more formal terms, a simple graph G is 

defined as an ordered pair [V(G), E(G)] which consists of a nonempty set of vertices V(G) 

and a set E(G) of unordered pairs of elements of V(G), called edges (I. Gutman, 1986; 

Rouvray, 1976; Trinajstić, 1983).  

On the other hand, the nucleic acids are polymeric biomolecules which use the 

nucleotides like structural basic units. The nucleotides are compound by three characteristic 



 

components: 1) a pentose, 2) a nitrogenous base and 3) a phosphate. The nitrogenous bases 

are derivatives of pyrimidine and purine. The base of a nucleotide is linked covalently in an 

N-β-glycosil bond to the 1’carbon of the pentose, and the phosphate is esterified to the 

5’carbon (Lehninger et al., 1993).  

Both DNA and RNA contain two major purine bases, adenine (A) and guanine (G), 

and two major pyrimidines. In both DNA and RNA one of the pyrimidines is cytosine (C), 

but the second major pyrimidine is not the same in both: it is thymine (T) in DNA and 

uracil (U) in RNA (Lehninger et al., 1993). Nucleic acids have two kinds of pentoses. The 

recurring deoxyribonucleotide units of DNA contain 2’-deoxy-D-ribose, and the 

ribonucleotide units of RNA contain D-ribose (Lehninger et al., 1993). The successive 

nucleotides of both DNA and RNA are covalently linked through phosphate-group 

“bridges”, in which the 5’-phosphate group of one nucleotide unit is joined to the 3’-

hydroxyl group of the next nucleotide, creating a phosphodiester linkage. Thus the covalent 

backbones of nucleic acids consist of alternating phosphate and pentose residues, and the 

nitrogenous bases may be regarded as side groups joined to the backbone at regular 

intervals (Lehninger et al., 1993). 

The purines and pyrimidines common in DNA and RNA are highly conjugated 

molecules, a property with important consequences for the structure, electron distribution, 

and light absorption of nucleic acids. The most important functional groups of pyrimidines 

and purines are ring nitrogens, carbonyl groups, and exocyclic amino groups. Hydrogen 

bonds involving the amino and carbonyl groups are the second important mode of 

interaction between bases in nucleic acid molecules (Lehninger et al., 1993). 

Most of the weak interactions (hydrogen bonds) form between Watson–Crick 

complementary bases (between pairs of non-consecutive bases), that is, between A and T 



 

(or A and U in RNA) and between C and G, but a far from negligible amount of bonds also 

form between other pairs of bases, as for example the G-U wobble pairs (Alberts et al., 

1994; Lehninger et al., 1993; Mathews et al., 2000; Stryer, 1995). Therefore, a RNA (or 

DNA) molecule can be depicted by means a graph. Graph’s vertices are nucleotides into 

polynucleotide chain and edges are both covalent interactions between nucleotides 

(phosphodiester bonds) and non-covalent interactions between nitrogenous bases (hydrogen 

bonds) from different nucleotides into polynucleotide sequence. Table 2 displays an 

example of how to depict a RNA sequence through a macromolecular graph.   

The nxn kth non-stochastic nucleotide’s graph–theoretic electronic-contact matrix, k
mM , 

is a square and symmetric matrix, where n is the number of nucleotides in the RNA (or 

DNA) sequence. The coefficients kmij are the elements of the kth power of  mM  and are 

defined as follows:  

mij = 1 if i ≠ j and ∃ ek ∈ E(Gm)                                                                                                                               (1)                                                      

= 0 otherwise 

where E(Gm) represents the set of edges of Gm.  

The matrix k
mM  provides the numbers of walks of length k that links every pair of 

vertices vi and vj. For this reason, each edge in 1
mM  represents a phosphodiester bond 

(covalent bond) or hydrogen-bonds (non-covalent bond) between nucleotides i and j.  

On the other hand, the kth stochastic nucleotide’s graph–theoretic electronic-contact 

matrix of Gm, k
m

s M , can be directly obtained from k
mM . Here, k

m
s M  = [ksmij], is a square 

matrix of order n (n = number of nucleotides) and the elements ksmij are defined as follows 

(Marrero-Ponce and F., 2005; Y. Marrero-Ponce, 2005a; Y. Marrero-Ponce, 2005b): 
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where, kmij are the elements of the kth power of k
mM  and the SUM of the ith row of k

mM  are 

named the k-order vertex degree of nucleotide i, i
kδ . It should be remarked that the matrix 

k
m

s M  has the property that the sum of the elements in each row is 1.  A nxn matrix with 

nonnegative entries having this property is called a “stochastic matrix” (Edwards and 

Penney, 1988). For an example of this matrices see Tables 3 and 4.  

Tables 3 and 4 come about here (see end of the document) 

2.3. A Theoretical Scaffold of Mathematical Bilinear Forms. 

In mathematics, a bilinear form in a real vector space is a mapping ℜ→VxVb : , which 

is linear in both arguments (Burgos-Román, 1994; Burgos-Román, 2000; Hernández, 1987; 

Jacobson, 1985; K. F. Riley, 1998; Werner, 1981). That is, this function satisfies the 

following axioms for any scalar α and any choice of vectors 121 ,,,, wvvwv  and 2w .  

i. ),(),(),( wvbwvbwvb ααα ==  

ii. ),(),(),( 2121 wvbwvbwvvb +=+       

iii. ),(),(),( 2121 wvbwvbwwvb +=+       

That is, b is bilinear if it is linear in each parameter, taken separately. 

Let V be a real vector space in nℜ ( nV ℜ∈ ) and consider that the following vector set, 

{ }neee ,...,, 21  is a basis set of nℜ . This basis set permits us to write in unambiguous form 

any vectors x and y of V, where nnxxx ℜ∈),...,,( 21 and nnyyy ℜ∈),...,,( 21 are the 

coordinates of the vectors x and y , respectively. That is to say,  
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As it can be seen, the defined equation for b may be written as the single matrix 

equation (see Eq. 7), where [Y] is a column vector (an nx1 matrix) of the coordinates of y  

in a basis set of ℜ n, and [X]T (a 1xn matrix) is the transpose of [X], where [X] is a column 

vector (an nx1 matrix) of the coordinates of x in the same basis of ℜ n. 

Finally, we introduce the formal definition of symmetric bilinear form. Let V be a real 

vector space and b be a bilinear function in VxV. The bilinear function b is called 

symmetric if Vyxxybyxb ∈∀= ,),,(),(  (Burgos-Román, 1994; Burgos-Román, 2000; 

Hernández, 1987; Jacobson, 1985; K. F. Riley, 1998; Werner, 1981). Then, 
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2.4. Non-Stochastic and Stochastic Nucleotide-Based Bilinear Indices: Total (Global) 

Definition. 

The kth non-stochastic and stochastic bilinear indices for a nucleic acid, 

),( mmkm yxb and ),( mmkm
s yxb , are computed from these kth non-stochastic and stochastic 

graph–theoretic electronic-contact matrix, k
mM  and k

m
s M  as shown in Eq. 9 and 10, 

respectively:  
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where n is the number of nucleotides in the nucleic acid, and xm
1,…,xm

n and ym
1,…,ym

n are 

the coordinates or components of the macromolecular vectors mx  and my  in a canonical 

basis set of ℜ n. 

The defined equations (9) and (10) for ),( mmkm yxb and ),( mmkm
s yxb  may be also 

written as the single matrix equations 11 and 12, correspondingly: 

),( mmkm yxb  = [Xm]T Mm
k [Ym]                                                                                     (11) 

),( mmkm
s yxb  = [Xm]T sMm

k [Ym]                                                                                  (12) 

where [Ym] is a column vector (an nx1 matrix) of the coordinates of my in the canonical 

basis set of ℜ n, and [Xm]T is the transpose of [Xm], where [Xm] is a column vector (an nx1 

matrix) of the coordinates of mx in the canonical basis of ℜ n. Therefore, if we use the 



 

canonical basis set, the coordinates [(xm
1,…,xm

n) and (ym
1,…,ym

n)] of any macromolecular 

vectors ( mx  and my ) coincide with the components of those vectors [(xm1,…,xmn) and 

(ym1,…,ymn)]. For that reason, those coordinates can be considered as weights (nitrogenous 

bases, that is to say “nucleotide labels”) of the vertices of Gm, due to the fact that 

components of the macromolecular vectors are values of some nucleotide property that 

characterizes each kind of nitrogenous base in the nucleic acid.  

It should be remarked that non-stochastic and stochastic bilinear indices are 

symmetric and non-symmetric bilinear forms, respectively. Therefore, if in the following 

weighting scheme, w and z are used as nucleotide weights to compute these nucleic acid’s 

bilinear indices, two different sets of stochastic bilinear indices, w-z ),( mmkm
s yxb  and z-w 

),( mmkm
s yxb [because mx w- my z ≠ mx z- my w] can be obtained and only one group of non-

stochastic bilinear indices w-z ),( mmkm yxb = z-w ),( mmkm yxb because in this case mx w- my z = 

mx z- my w can be calculated. Tables 3 and 4 show how determine the non-stochastic and 

stochastic total bilinear indices of several orders for the RNA sequence of Table 2. 

 

2.5. Non-Stochastic and Stochastic Local Bilinear Indices: Nucleotide, Nucleotide-type 

and Nucleic Acid Fragment Bilinear Indices Definition. 

In the last decade, Randić (Randić, 1991) proposed a list of desirable attributes for a 

MDs. Therefore, this list can be considered as a methodological guide for the development 

of new topological indices. One of the most important criteria is the possibility of defining 

the descriptors locally. This attribute refers to the fact that the index could be calculated for 

the molecule (for us nucleic acids) as a whole but also over certain fragments of the 

structure itself. Sometimes, the properties of a group of biomolecules (nucleic acid or 



 

protein) are related more to a certain zone or fragment than to the bio-macromolecule as a 

whole. Thereinafter, the global definition never satisfies the structural requirements needed 

to obtain a good correlation in QSAR and QSPR studies.  

Therefore, in addition to total bilinear indices computed for the whole nucleic acid, a 

local-fragment (polynucleotidic fragment) formalism can be developed. These descriptors 

are termed local non-stochastic and stochastic bilinear indices, ),( mmLkm yxb and 

),( mmLkm
s yxb , respectively. The definition of these descriptors is as follows: 
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where kmijL [ksmijL] is the kth element of the row “i” and column “j” of the local matrix L
k
mM  

[ L
k
m

s M ]. This matrix is extracted from the k
mM  [ k

m
s M ] matrix and contains information 

referred to the vertices of the specific nucleic acid fragments (Fr) and also of the molecular 

environment in k step. The matrix L
k
mM  [ L

k
m

s M ] with elements kmijL [ksmijL] is defined as 

follows (see Table 5 and 6 for the performance of L
k
mM  and L

k
m

s M practical examples):  

 

kmijL [ksmijL]  = kmij [ksmijL] if both vi and vj are vertices (amino-acid) contained within the     

Fr 

= 1/2
 kmij  [ksmijL] if  vi or vj are vertices contained within Fr but not both  

= 0 otherwise.                                                                                               (15)                             

 

Tables 5 and 6 comes about here (see end of the document) 



 

These local analogues can also be expressed in matrix form by the expressions: 

),( mmLkm yxb  = [Xm]T Mm
k

L
 [Ym]                                                                                   (16) 

),( mmkm
s yxb  = [Xm]T sMm

k
L

 [Ym]                                                                                  (17) 

It should be remarked that the scheme above follows the spirit of a Mulliken 

population analysis (D.Walker, 1993). It should be also pointed out that for every 

partitioning of a nucleic acid into Z macromolecular fragments there will be Z local 

macromolecular fragment matrices. In this case, if a nucleic acid is partitioned into Z 

molecular fragments, the matrix k
mM  [ k

m
s M ] can be correspondingly partitioned into Z 

local matrices L
k
mM  [ L

k
m

s M ], L = 1,..., Z, and the kth power of matrix k
mM  [ k

m
s M ] is exactly 

the sum of the kth power of the local Z matrices. In this way, the total non-stochastic and 

stochastic bilinear indices are the sum of the non-stochastic and stochastic bilinear indices, 

respectively, of the Z macromolecular fragments (see Table 7 for a realistic example): 

),(),(
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In addition, the nucleotide-type bilinear indices can also be calculated. Nucleotide 

and nucleotide-type bilinear indices are specific cases of local nucleic acid bilinear indices. 

In this sense, the kth nucleotide bilinear indices are calculated by summing the kth nucleotide 

bilinear indices of all nucleotide of the same nucleotide type in the nucleic acid. Any local 

nucleic acid’s bilinear index has a particular meaning, especially for the first values of k, 

where the information about the structure of the fragment FR is contained. Higher values of 



 

k relate to the environment information of the fragment FR considered within the bio-

macromolecular graph. 

In any case, a complete series of indices performs a specific characterization of the 

chemical structure. The generalization of the matrices and descriptors to “superior 

analogues” is necessary for the evaluation of situations where only one descriptor is unable 

to bring a good structural characterization (Randić, 1991; Todeschini and Consonni, 2000). 

The local bio-macromolecular indices can also be used together with total ones as variables 

for QSAR/QSPR modelling of properties or activities that depend more on a region or a 

fragment than on the macromolecule as a whole. 

Table 7 comes about here (see end of the document) 

 

3. MATERIAL AND METHODS 

3.1. Computational Strategies 

TOMOCOMD is an interactive program for molecular design and bioinformatics 

research (Marrero-Ponce and Romero, 2002). The program is composed by four 

subprograms, each one of them dealing with drawing structures (drawing mode) and 

calculating 2D and 3D molecular descriptors (calculation mode). The modules are named 

CARDD (Computed-Aided ‘Rational’ Drug Design), CAMPS (Computed-Aided Modeling 

in Protein Science), CANAR (Computed-Aided Nucleic Acid Research) and CABPD 

(Computed-Aided Bio-Polymers Docking). In this paper we outline salient features 

concerning with only one of these subprograms: CANAR. This subprogram bases on a 

user-friendly philosophy without prior knowledge of programming skills. 



 

The calculation of total and local (nucleotide) macromolecular bilinear indices for 

any nucleic acids was implemented in the TOMOCOMD-CANAR software (Marrero-Ponce 

and Romero, 2002). The following list briefly resumes the main steps for the application of 

this method in QSAR/QSPR: 

1. Draw the bio-macromolecular graphs (Gm) for each RNA/ADN of the data set, 

using the software’s drawing mode. Selection of the active nucleotide symbol 

carries out this procedure. Here, we consider only covalent interaction 

(phosphodiester bond) and hydrogen bond interaction between complementary 

bases.  

2. Use appropriated purine and pyrimidine bases weights in order to differentiate 

the residues in each nucleotide. This work uses as nucleotide weights five 

properties of DNA-RNA bases (see Table 1) (Marrero-Ponce and Romero, 

2002). This parametrization is done using the properties of U, T, A, G, and C 

only, because the only uncommon part of these nucleotides are these bases. 

3. Compute the nucleic acid bilinear indices of the kth non-stochastic and stochastic 

nucleotide’s graph–theoretic electronic-contact matrix of Gm, k
mM  and k

m
s M , 

respectively. They can be performed in the software calculation mode, which you 

can select the DNA-RNA bases properties and the family descriptor previously to 

calculate the bio-macromolecular indices. This software generates a table in 

which the rows and columns correspond to the compounds and the ),( mmkm yxb , 

correspondingly.  

4. Find a QSPR/QSAR equation by using statistical techniques, such as multilinear 

regression analysis (MRA), Neural Networks (NN), Linear Discrimination 



 

Analysis (LDA), and so on. That is to say, we can find a quantitative relation 

between a property P and the ),( mmkm yxb  having, for instance, the following 

appearance,                                                                                                                

P = a0 ),(0 mmm yxb  +a1 ),(1 mmm yxb +a2 ),(2 mmm yxb +…+ ak ),( mmkm yxb +c   (20) 

where P is the measurement of the property, ),( mmkm yxb  [or ),( mmLkm yxb ] is 

the kth total [or local] bio-macromolecular bilinear indices, an the ak’s are the 

coefficients obtained by the statistical analysis. 

5. Test the robustness and predictive power of the QSPR/QSAR equation by using 

internal cross-validation techniques.  

3.2. Data Sets 

The data set of footprinted and binding nucleotides was extracted from the literature 

(McPike et al., 2002). Figure 1 depicts the secondary structure of the HIV-1 Ψ-RNA 

packaging region as well as the binding sites of Paromomycin. A representation of the Ψ-

RNA appears along with a summary of binding/enhancement information for 

Paromomycin. The RNA consists of the ‘main stem’, positions 213–238 and 361–388; SL-

1, which contains the dimmer initiation site; SL-2, having the 5’splice donor site; SL-3, and 

SL-4, the latter contains the start codon (AUG) for the gag gene. 

Figure 1 comes about here (see end of the document) 

3.3. Chemometric Analysis: Regression-Based QSAR Model. 

Based on the discussion above, a simple linear model was proposed to predict drug–

nucleotide affinity. Multiple Linear Regression (MLR) statistical technique was used to 

obtain a quantitative model. This statistical analysis was carried out with the STATISTICA 



 

software package (Statsoft, 1999). TOMOCOMD-CANAR model used for the statistical 

procedure the first 16 ),( mmLkm yxb  [from ),(0 mmLm yxb to ),(15 mmLm yxb ] for each 

nucleotides in RNA. 

Forward stepwise was fixed as the strategy for variable selection. The tolerance 

parameter (proportion of variance that is unique to the respective variable) used was the 

default value for minimum acceptable tolerance, which is 0.01.  

The quality of the MLR model was determined examining the statistic parameters of 

multivariable comparison of regression and cross-validation procedures. In this sense, the 

quality of the model was determined by examining the regression coefficients (R), 

determination coefficients (R2), Fisher ratio’s p-level [p(F)], standard deviations of the 

regression (s) and the leave-one-out (LOO) press statistics (q2, scv) (Golbraikh and Tropsha, 

2002). 

 

4. RESULTS AND DISCUSSION 

In order to prove the applicability of this new approach, quantitative linear models 

based on local (nucleotide) non-stochastic and stochastic bilinear indices were obtained by 

using LMR, with the aim to predict the interaction strength between Paromomycin and its 

binding ribonucleotides within HIV packaging region. The found equations show the 

relatedness of this method. These were selected taking into account several statistical 

parameters listed below. Next it is showed the best two non-stochastic and stochastic 

equations, respectively (others two can be seen in Table 8): 

Log K = 0.689 (±0.044) + 0.016 (±0.001) ),(0
2602

mmL
f yxb∈−  

- 1.5 x 10-5 (±2.0 x 10-6) ),(5
1260

mmL
E yxb−∈  



 

+ 2.04 x 10-4 (± 0.34 x 10-4) ),(5
22

mmL
EF yxb−                                               (21) 

N = 24  R = 0.95  R2 = 0.91  s = 0.08  q2 = 0.86  scv = 0.09  F (3, 19) = 60.71  p< 0.0001 

Log K = 0.307 (±0.137) + 0.016 (±0.001) ),(0
21

mmL
sff yxb−   

- 1.295 x 10-15 (±1.788 x 10-16) ),(15
2601

mmL
sf yxb∈−  

+ 0.051 (± 0.013) ),(2
1260

mmL
sE yxb−∈  

- 0.050 (±0.012) ),(2
2260

mmL
sE yxb−∈                                                     (22) 

N = 24   R = 0.94   R2 = 0.89   s = 0.10   q2 = 0.79   scv = 0.11    F (4, 18) = 36.88   p< 

0.0001 

where N is the number of interactions with known affinity constant (Log K), F is Fisher’s 

statistics, s is the standard error of estimates, R2 is the squared regression coefficient for 

training and q2 the same for the LOO cross-validation experiments. 

Table 8 comes about here (see end of the document) 

In the development of the quantitative models for the LogK description of the 

calibration data set, one nucleotide (A276) highlights as a statistical outlier. Outlier 

detection was performed using the following standard statistical test: residual, standardized 

residuals, Studentized residual and Cook’s distance. 

Equations 21 and 22 successfully explained about 91% and 89%, correspondingly, of 

the variability in the data for the interaction magnitudes between the aminoglycoside and 

HIV. LOO cross-validation procedure was chosen to test predictability and stability of 

these models. The squared cross-validation regression coefficients showed that models 21 

and 22 accounted for 86% and 79%, respectively, of the data variability in cross-validation 



 

study, what could be an indicator of both stability and predictability (Golbraikh and 

Tropsha, 2002). The results for the residual analysis are depicted in Table 9.  

Table 9 comes about here (see end of the document) 

Therefore, taking into account statistical parameters in both non-stochastic and 

stochastic equations (Eqs. 21 and 22, respectively) it can be said that they are appropriated 

for description of interaction magnitude between the antibiotic and HIV packaging region.  

Statistical parameters in non-stochastic equation (21) suggest a high quality of found 

model. Consequently, non-stochastic model must be preferred instead stochastic what 

suggest that non-stochastic local bilinear indices are better than stochastic in quantitative 

description of bio-macromolecular structure. 

Some authors have reported similar equations at the introduced here. For instance 

Marrero-Ponce applied quadratic (Marrero-Ponce et al., 2004d) and linear indices (Marrero 

Ponce et al., 2005) with the same purpose. In the development of the quadratic indices 

based model for the Log K description, it was too detected the nucleotide (A276) as 

statistical outlier.  

Likewise in González-Díaz et al. work’s (2003) it was developed similar equations in 

order to predict antibiotic-nucleotide interaction magnitudes using MARCH-INSIDE 

(González-Díaz et al., 2003a) based descriptors. They additionally make use of a dummy 

variable RNAse, which has the values RNAse = 1 for experiments performed in the 

presence of RNAse I and RNAse = -1 for RNAse T1. Table 8 shows a comparison between 

ours models with approaches previously described (González-Díaz et al., 2003a; González-

Díaz et al., 2003b; Marrero-Ponce et al., 2004d; Marrero Ponce et al., 2005).  

As can be observed in Table 8, the present results are similar-to-better to previously 

report (González-Díaz et al., 2003a; González-Díaz et al., 2003b; Marrero-Ponce et al., 



 

2004d; Marrero Ponce et al., 2005), showing the best LOO press statistic parameters. It is 

rather important to remarkable that our models not use dummy variables like Gonzalez-

Diaz equations (González-Díaz et al., 2003a; González-Díaz et al., 2003b; Marrero-Ponce 

et al., 2004d; Marrero Ponce et al., 2005)), which used experimental information (RNAse 

dummy variable) in addition to structural (nucleotide) descriptors (MARCH-INSIDE 

Method). 

On the other hand, the LMR-QSAR models (Eqs. 21-24, see also Table 8) involve 

short-reaching [k ≤ 3, i.e., ),(0
2602

mmL
f yxb∈− , ),(0

21

mmL
sff yxb− , f1- f2 sb1L ),( mm yx , 

),(2
1260

mmL
sE yxb−∈ , ),(2

2260

mmL
sE yxb−∈ ], middle-reaching [4 < k ≤ 9, i.e., ),(5

1260
mmL

E yxb−∈ , 

),(5
22

mmL
EF yxb− ,  f2- Є260b7L ),( mm yx ] and far-reaching [k = 10 or greater i.e., 

),(15
2601

mmL
sf yxb∈− ]. The RNA (nucleotide) bilinear indices of cero order (k = 0) 

characterized each kind of RNA bases (nucleotide), but not consider the environmental 

topology of the nucleotide. In all models these indices have a positive contribution. This is 

a logical result, because this indices have a high values for purine nucleotides, which 

present more probability of drug interaction than pyrimidine ones. This situation means that 

the probability of binding increased with the consequently increase of electron density of 

RNA bases, due to this possibility the hydrogen bond and/or electrostatic interaction of 

amino groups/protonated amine groups with sites on RNA. Others RNA-bilinear indices of 

short-reaching involved in the early stages of Paromomycin-nucleotide interaction. Such a 

behavior may be explained by taking into consideration the fact that the electronic and/or 

topologic changes in the nucleotide backbone, which is necessary for the drug-nucleotide 

interaction, the more marked structural changes in the ±1 and ±2-vicinity of the 

nucleotides. The contribution of the middle-to-high reaching, ±5, ±7 and ±15-vicinities of 



 

the nucleotide, in both equations show that the interaction between Paromomycin and a 

nucleotide of RNA depends on the electro-topologic environment of this nucleotide 

(middle-to-long-range interactions). These results are in relation to the factor that control 

binding specificity for aminoglycosides’ interaction. In general, the Paromomycin prefers 

to bind bulged or other non-Watson-Crick secondary RNA elements, in consequence this 

drug is too large to fit into the grooves of regular A-form RNA structure (McPike et al., 

2002). 

 

5. CONCLUDING REMARKS 

Although there have been many discoveries in the last years in the field of 

bioinformatics, it is necessary the definition of novel bio-macromolecular descriptors that 

could explain different bio-macromolecular properties by means of a QSAR approach. In 

this sense, the approach described here represents a novel and very promising method for 

theoretical-biology studies. It presents a new set of bio-macromolecular descriptors that are 

calculated by using bilinear forms, which are relevant to nucleic acid QSAR/QSPR studies. 

Their derivation is straightforward, and it is easy to interpret the QSARs/QSPRs which 

include them. 

We have shown here that the use of the local (nucleotide) nucleic acid bilinear indices 

is able to depict the affinity with which paromomycin binds to the HIV-1 W-RNA 

packaging region. The resulting models are significant of the statistical point of view. The 

models found to describe the interaction profile include nucleotide’s bilinear indices 

accounting for electronic and topologic features of each nucleotide in RNA molecule. 

These models not only are good enough to predict the interaction parameters, but also 

permit the interpretation of the driving forces of such interaction processes. In this sense, 



 

developed equations involve short-reaching (k ≤ 3), middle- reaching (4 < k ≤ 9) and far-

reaching (k = 10 or greater) nucleotide’s bilinear indices. This situation points to that the 

interaction between Paromomycin and a nucleotide of RNA depends on the electro-

topologic environment of the nucleotides. Finally, the satisfactory comparative results 

showed that nucleic acid bilinear indices used here will be a novel chem- and bio-

informatics tool for further research. 

 

Acknowledgement: Sadiel Ortega-Broche (O-B. S) acknowledges to Bioinformatics 

Research Center of Central University ‘Marta Abreu’of Las Villas for kind hospitality 

during the 2006-2007. Yovani Marrero-Ponce (M-P. Y) acknowledges the Valencia 

University for kind hospitality during the first semester of 2008. M-P. Y thanks are given to 

the Valencia University, (Spain) for partial financial support as well as the program 

‘Estades Temporals per an Investigadors Convidats’ for a fellowship to work at Pharmacy 

Faculty (2008). M-P. Y also thanks support from Spanish MEC (Project Reference: 

SAF2006-04698). Finally, but not less, CAMD-BIR Unit thanks are given to the research 

project called: “Strengthening Postgraduate Education and Research in Pharmaceutical 

Sciences”. This project is funded by the Flemish Interuniversity Council (VLIR) of 

Belgium. 

 

6. REFERENCES  

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. Eds.), 1994. 

Molecular Biology of the Cell. Garland, New York and London. 



 

Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A., and Wheeler, D.L., 

2000. GenBank. Nucleic Acid Res 28, 15-18. 

Brenowitz, M., Senear, D.F., Shea, M.A., and Ackers, G.K., 1986. Methods Enzymol. 130, 

132. 

Burgos-Román, J.d. (Ed.), 1994. Curso de Álgebra y Geometría, Madrid, Spain. 

Burgos-Román, J.d. (Ed.), 2000. Álgebra y Geometría Cartesíana. . 

Casañola-Martin, G.M., Khan, M.T.H., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, 

M.N., and Torrens, F., 2006. New Tyrosinase Inhibitors Selected by Atomic Linear 

Indices-Based Classification Models. Bioorg. Med. Chem. Letter. 16, 324-330. 

Castillo-Garit, J.A., Marrero-Ponce, Y., Torrens, F., and Rotondo, R., 2007. Atom-Based 

Stochastic and Non-Stochastic 3D-Chiral Bilinear Indices and Their Applications to 

Central Chirality Codification. J. Mol. Graph. Modell. 26, 32-47. 

D.Walker, P.G.M., 1993. J. Am. Chem. Soc. 115, 12423. 

Edwards, C.H., and Penney, D.E., 1988. Elementary Linear Algebra. Prentice-Hall, 

Englewood Cliffs, New Jersey, USA  

Galas, D.J., and Schmithz, A., 1978. Nucleic Acid Res. 5, 3157. 

Gale, E.F., Gundliff, E., Reynolds, P.E., Richmon, M.H., and Waring, M.J. Eds.), 1981. 

The Molecular Basis of Antibiotic Action, London. 

Golbraikh, A., and Tropsha, A., 2002. Beware of q2! J Mol Graph Model 20, 269-76. 

Gonzalez-Diaz, H., and Uriarte, E., 2005. Proteins QSAR with Markov average 

electrostatic potentials. Bioorg Med Chem Lett 15, 5088-94. 



 

Gonzalez-Diaz, H., Uriarte, E., and Ramos de Armas, R., 2005. Predicting stability of Arc 

repressor mutants with protein stochastic moments. Bioorg Med Chem 13, 323-31. 

González-Díaz, H., Ramos de Armas, R., and Molina, R., 2003a. Vibrational Markovian 

Modelling of Footprints after the Interaction of Antibiotics with the Packaging Region 

of HIV Type 1. Bull. Math. Biol. 65, 991-1002. 

González-Díaz, H., Ramos de Armas, R., and Molina, R., 2003b. Markovian Negentropies 

in Bioinformatics. 1. A Picture of Footprints after the Interaction of the HIV-1 RNA 

Packaging Region with Drugs. Bioinformatics 19, 2079-2087. 

Hamasaki, K., and Akihiko, U., 2001. Aminoglycoside Antibiotics, neamine and Its 

derivatives as Potent Inhibitors for the RNA-Proteins interactions Derived from HIV-1 

Activators Biorganic & Medicinal Chemistry Letters 11, 591-594. 

Henn, A., Halfon, J., Kela, I., Orion, I., and Sagi, I., 2001. Nucleic Acids Res. 29, 122. 

Hernández, E. (Ed.), 1987. Álgebra y Geometría, Madrid, Spain. 

Hua, S., and Sun, Z., 2001. Support vector machine approach for protein subcellular 

localization prediction. Bioinformatics 17, 721-8. 

I. Gutman, a.O.E.P. (Ed.), 1986. Mathematical Concepts in Organic Chemistry, Berlin. 

Jacobson, N. (Ed.), 1985. Basic Algebra I New York. 

K. F. Riley, M.P.H., and S. J. Vence (Ed.), 1998. Mathematical Methods for Physics and 

Engineering. 

Lehninger, A.L., Nelson, D.L., and Cox, M.M. Eds.), 1993. Principles of Biochemistry, 

New York. 



 

Lynch, S.R., Recht, M.I., and Puglisi, J.D., 2000. Biochemical and Nuclear Magnetic 

Resonance Studies of Aminoglycoside-RNA Complexes. . Meth. Enzymol. 317, 240-

261. 

Marrero-Ponce, Y., 2003. Total and Local Quadratic Indices of the Molecular 

Pseudograph´s Atom Adjacency Matrix: Applications to the Prediction of Physical 

Properties of Organic Compounds. Molecules 8, 687-726. 

Marrero-Ponce, Y., 2004a. Linear indices of the "molecular pseudograph's atom adjacency 

matrix": definition, significance-interpretation, and application to QSAR analysis of 

flavone derivatives as HIV-1 integrase inhibitors. J Chem Inf Comput Sci 44, 2010-26. 

Marrero-Ponce, Y., 2004b. Total and local (atom and atom type) molecular quadratic 

indices: significance interpretation, comparison to other molecular descriptors, and 

QSPR/QSAR applications. Bioorg. Med. Chem.  12, 6351-6369. 

Marrero-Ponce, Y., and Romero, V., TOMOCOMD-CARDD software. TOMOCOMD 

(TOpological MOlecular COMputer Design) for Windows, version 1.0 is a preliminary 

experimental version; in future a professional version can be obtained upon request to Y. 

Marrero: yovanimp@qf.uclv.edu.cu or ymarrero77@yahoo.es Central University of Las 

Villas, Santa Clara, Villa Clara 2002. 

Marrero-Ponce, Y., Huesca-Guillen, A., and Ibarra-Velarde, F., 2005a. Quadratic indices of 

the ¨molecular pseudograph´s atom adjacency matrix¨ and their stochastic forms: a novel 

approach for virtual screening and in silico discovery of new lead paramphistomicide 

drugs-like compounds. J. Mol. Struct. (Theochem) 717, 67-79. 



 

Marrero-Ponce, Y., Cabrera, M.A., Romero, V., Ofori, E., and Montero, L.A., 2003. Total 

and Local Quadratic Indices of the ¨Molecular Pseudograph´s Atom Adjacency Matrix¨. 

Application to Prediction of Caco-2 Permeability of Drugs. . Int. J. Mol. Sci. 4, 512-36. 

Marrero-Ponce, Y., Castillo-Garit, J.A., Torrens, F., Romero-Zaldivar, V., and Castro, E., 

2004a. Atom, Atom-Type, and Total Linear Indices of the Molecular Pseudograph's 

Atom Adjacency Matrix: Application to QSPR/QSAR Studies of Organic Compounds. 

Molecules 9, 1100-1123. 

Marrero-Ponce, Y., Díaz, H.G., Romero, V., Torrens, F., and Castro, E.A., 2004b. 3D-

Chiral quadratic indices of the ¨molecular pseudograph´s atom adjacency matrix¨ and 

their application to central chirality codification: classification of ACE inhibitors and 

prediction of r-receptor antagonist activities. Bioorg. Med. Chem. 12, 5331-5342. 

Marrero-Ponce, Y., Castillo-Garit, J.A., Castro, E.A., Torrens, F., and Rotondo, R., 2008a. 

3D-Chiral (2.5) Atom-Based TOMOCOMD-CARDD Descriptors: Theory and QSAR 

Applications to Central Chirality Codification. J. Math. Chem. DOI 10.1007/s10910-

008-9386-3. 

Marrero-Ponce, Y., Torrens, F., García-Domenech, R., Ortega-Broche, S.E., and Romero 

Zaldivar, V., 2008b. Novel 2D TOMOCOMD-CARDD Descriptors: Atom-Based 

Stochastic and Non-Stochastic Bilinear Indices and Their QSPR Applications. J. Math. 

Chem., DOI 10.1007/s10910-008-9389-0. 

Marrero-Ponce, Y., Medina-Marrero, R., Castillo-Garit, J.A., Romero-Zaldivar, V., 

Torrens, F., and Castro, E.A., 2005b. Protein linear indices of the 'macromolecular 

pseudograph alpha-carbon atom adjacency matrix' in bioinformatics. Part 1: prediction 



 

of protein stability effects of a complete set of alanine substitutions in Arc repressor. 

Bioorg Med Chem 13, 3003-15. 

Marrero-Ponce, Y., Medina-Marrero, R., Torrens, F., Martinez, Y., Romero-Zaldivar, V., 

and Castro, E.A., 2005c. Atom, atom-type, and total nonstochastic and stochastic 

quadratic fingerprints: a promising approach for modeling of antibacterial activity. 

Bioorg Med Chem 13, 2881-99. 

Marrero-Ponce, Y., Montero-Torres, A., Zaldivar, C.R., Veitia, M.I., Perez, M.M., and 

Sanchez, R.N., 2005d. Non-stochastic and stochastic linear indices of the 'molecular 

pseudograph's atom adjacency matrix': application to 'in silico' studies for the rational 

discovery of new antimalarial compounds. Bioorg Med Chem 13, 1293-304. 

Marrero-Ponce, Y., Cabrera, M.A., Romero-Zaldivar, V., Bermejo, M., Siverio, D., and 

Torrens, F., 2005e. Prediction of Intestinal Epithelial Transport of Drug in (Caco-2) Cell 

Culture from Molecular Structure using in silico Approaches During Early Drug 

Discovery. Internet Electron. J. Mol. Des. 4 124-150. 

Marrero-Ponce, Y., Medina, R., Castro, E.A., de Armas, R., González, H., Romero, V., and 

Torrens, F., 2004c. Protein Quadratic Indices of the "Macromolecular Pseudograph's α-

Carbon Atom Adjacency Matrix". 1. Prediction of Arc Repressor Alanine-mutant's 

Stability. Molecules 9 1124-1147. 

Marrero-Ponce, Y., Nodarse, D., González, H.D., Ramos de Armas, R., Romero-Zaldivar, 

V., Torrens, F., and Castro, E., 2004d. Nucleic Acid Quadratic Indices of the 

"Macromolecular Graph's Nucleotides Adjacency Matrix". Modeling of Footprints after 

the Interaction of Paromomycin with the HIV-1 Ψ-RNA Packaging Region. Int. J. Mol. 

Sci. 5, 276-293. 



 

Marrero-Ponce, Y., Khan, M.T.H., Casañola-Martín, G.M., Ather, A., Sultankhodzhaev, 

M.N., Torrens, F., and Rotondo, R., 2007. Prediction of Tyrosinase Inhibition Spectra 

for Chemicals Using Novel Atom-Based Bilinear Indices. CheMedChem 2, 449–478. 

Marrero-Ponce, Y., Iyarreta-Veitia, M., Montero-Torres, A., Romero-Zaldivar, C., Brandt, 

C.A., Avila, P.E., Kirchgatter, K., and Machado, Y., 2005f. Ligand-based virtual 

screening and in silico design of new antimalarial compounds using nonstochastic and 

stochastic total and atom-type quadratic maps. J Chem Inf Model 45, 1082-100. 

Marrero-Ponce, Y., Marrero, R.M., Torrens, F., Martinez, Y., Bernal, M.G., Zaldivar, V.R., 

Castro, E.A., and Abalo, R.G., 2006a. Non-stochastic and stochastic linear indices of the 

molecular pseudograph's atom-adjacency matrix: a novel approach for computational in 

silico screening and "rational" selection of new lead antibacterial agents. J. Mol. Mod. 

12, 255–271. 

Marrero-Ponce, Y., Castillo-Garit, J.A., Olazabal, E., Serrano, H.S., Morales, A., 

Castanedo, N., Ibarra-Velarde, F., Huesca-Guillen, A., Sanchez, A.M., Torrens, F., and 

Castro, E.A., 2005g. Atom, atom-type and total molecular linear indices as a promising 

approach for bioorganic and medicinal chemistry: theoretical and experimental 

assessment of a novel method for virtual screening and rational design of new lead 

anthelmintic. Bioorg Med Chem 13, 1005-20. 

Marrero-Ponce, Y., Castillo-Garit, J.A., Olazabal, E., Serrano, H.S., Morales, A., 

Castanedo, N., Ibarra-Velarde, F., Huesca-Guillen, A., Jorge, E., del Valle, A., Torrens, 

F., and Castro, E.A., 2004e. TOMOCOMD-CARDD, a novel approach for computer-

aided 'rational' drug design: I. Theoretical and experimental assessment of a promising 



 

method for computational screening and in silico design of new anthelmintic 

compounds. J. Comput.-Aided Mol. Des. 18, 615-634. 

Marrero-Ponce, Y., Meneses-Marcel, A., Machado-Tugores, Y., Montero Pereira, D., 

Escario, J.A., Nogal-Ruiz, J.J., Ochoa, C., Arán, V.J., Martínez-Fernández, A.R., García 

Sánchez, R.N., Montero-Torres, A., and Torrens., F., 2005h. A Computer-Based 

Approach to the Rational Discovery of New Antitrichomonas Drugs by Atom-Type 

Linear Indices. Curr. Drug Disc. Tech. 2, 245-265. 

Marrero-Ponce, Y., Meneses-Marcel, A., Catillo-Garit, J.A., Machado-Tugores, Y., 

Escario, J.A., Gómez-Barrio, A., Montero Pereira, D., Nogal-Ruiz, J.J., Arán, V.J., 

Martínez-Fernández, A.R., Torrens, F., and Rotondo, R., 2006b. Predicting 

Antitrichomonal Activity: A Computational Screening Using Atom-Based Bilinear 

Indices and Experimental Proofs. Bioorg. Med. Chem. 14, 6502–6524. 

Marrero-Ponce, Y.H.-G., A.; Ibarra-Velarde,, and F., 2005. J. Mol. Struct.(THEOCHEM) 

717, 67-79. 

Marrero Ponce, Y., 2004. Linear Indices of the ¨Molecular Pseudograph´s Atom Adjacency 

Matrix¨: Definition Significance-Interpretation, and Application to QSAR Analysis to 

Flavone Derivatives as HIV-1 Integrase Inhibitors. J Chem Inf Comput Sci 44, 2010-26. 

Marrero Ponce, Y., Castillo Garit, J.A., and Nodarse, D., 2005. Linear indices of the 

'macromolecular graph's nucleotides adjacency matrix' as a promising approach for 

bioinformatics studies. Part 1: prediction of paromomycin's affinity constant with HIV-1 

psi-RNA packaging region. Bioorg Med Chem 13, 3397-404. 



 

Marrero Ponce, Y., Cabrera Perez, M.A., Romero Zaldivar, V., Gonzalez Diaz, H., and 

Torrens, F., 2004. A new topological descriptors based model for predicting intestinal 

epithelial transport of drugs in Caco-2 cell culture. J Pharm Pharm Sci 7, 186-99. 

Mathews, C.K., van Holde, K.E., and Ahern, K.G. Eds.), 2000. Biochemistry, San 

Francisco 

McPike, P.M., Goodisman, J., and Dabrowiak, C.J., 2002. Footprinting and Circular 

Dichroims Studies on Paromomycin Binding to the Packaging Region of the Human 

Immunodeficiency Virus Type-1. Bioorg. Med. Chem. 10, 3663–3672. 

Meneses-Marcel, A., Marrero-Ponce, Y., Machado-Tugores, Y., Montero-Torres, A., 

Pereira, D.M., Escario, J.A., Nogal-Ruiz, J.J., Ochoa, C., Aran, V.J., Martinez-

Fernandez, A.R., and Garcia Sanchez, R.N., 2005a. A linear discrimination analysis 

based virtual screening of trichomonacidal lead-like compounds: outcomes of in silico 

studies supported by experimental results. Bioorg Med Chem Lett 15, 3838-43. 

Meneses-Marcel, A., Marrero-Ponce, Y., Machado-Tugores, Y., Montero-Torres, A., 

Montero Pereira, D., Escario, J.A., Nogal-Ruiz, J.J., Ochoa, C., Arán, V.J., Martínez-

Fernández, A.R., and García Sánchez, R.N., 2005b. A linear discrimination analysis 

based virtual screening of trichomonacidal lead-like compounds: Outcomes of in silico 

studies supported by experimental results. Bioorg. Med. Chem Lett. 17, 3838-3843. 

Montero-Torres, A., Celeste Vega, M., Marrero-Ponce, Y., Rolón, M., Gómez-Barrio, A., 

Escario, J.A., Arán, V.J., Martínez-Fernández, A.R., and Meneses-Marcel, A., 2005. A 

novel non-stochastic quadratic fingerprints-based approach for the ‘in silico’ discovery 

of new antitrypanosomal compounds Bioorg. Med. Chem. 13, 6264–6275. 



 

Montero-Torres, A., García-Sánchez, R.N., Marrero-Ponce, Y., Machado-Tugores, Y., 

Nogal-Ruiz, J.J., Martínez-Fernández, A.R., Arán, V.J., Ochoa, C., Meneses-Marcel, A., 

and Torrens, F., 2006. Non-stochastic quadratic fingerprints and LDA-based QSAR 

models in hit and lead generation through virtual screening: theoretical and experimental 

assessment of a promising method for the discovery of new antimalarial compounds. 

Eur. J. Med. Chem. 41, 483–493. 

Österberg, F., Garrett, M.M., Sanner, M.F., Olson, A.J., and Goodsell, S.D., 2002. 

Automated docking to multiple target structures: incorporation of protein mobility and 

structural water heterogeneity in autodock. Proteins Struc. Funct. Genet 46, 34. 

Ozoline, O.N., Fujita, N., and Ishihama, A., 2001. Nucleic Acids Res. 29, 4909. 

Pogliani, L., 2000. From Molecular Connectivity Indices to Semiempirical Connectivity 

Terms: Recent Trends in Graph Theoretical Descriptors. Chem. Rev. 100, 3827-3858. 

Ramos de Armas, R., Gonzalez Diaz, H., Molina, R., and Uriarte, E., 2004. Markovian 

Backbone Negentropies: Molecular descriptors for protein research. I. Predicting protein 

stability in Arc repressor mutants. Proteins 56, 715-23. 

Randić, M., 1991. Generalized Molecular Descriptors. J. Math. Chem. 7, 155-168. 

Rouvray, D.H. (Ed.), 1976. In Chemical Applications of Graph Theory, London. 

Sakharkar, M.K., Long, M., Tin, W.T., and Souza, S.J., 2000a. ExInt: an exon/intron 

database. Nucleic Acid Res 28, 191-192. 

Sakharkar, M.K., Kangueane, P., Woon, T.W., Tan, T.W., Kolatkar, P.R., Long, M., and de 

Souza, S.J., 2000b. IE-KB:intron exon knowledge base. Bioinformatics 16, 1151-1152. 



 

Saxonov, S., Daizadeh, I., Fedorov, A., and Gilbert, W., 2000. EID: the Exon-Intron 

Database-an Exhaustible Database of Protein Coding Intron-Containing Genes. Nucleic 

Acid Res 28, 185-190. 

Schisler, N.J., and Palmer, J.D., 2000 The IDB and IEDB: intron sequence and evolution 

databases. Nucleic Acid Res 28, 181-184. 

Statsoft, I., STATISTICA,  1999. 

Stryer, L. (Ed.), 1995. Biochemistry, New York 

Sullivan, J.M., Goodisman, J., and Dabrowiak, C.J., 2002. Absorption studies on 

aminoglycosides binding to the packaging region of the human immunodeficiency virus 

type-1. Bioorg. Med. Chem.Lett. 12 615-618. 

Todeschini, R., and Consonni, V., 2000. Handbook of Molecular Descriptors. Wiley-VCH, 

Germany. 

Trinajstić, N., 1983. Chemical Graph Theory. CRC Press, Boca Raton, FL. 

Tullius, T.D., 1989. Annu. Rev. Biophys. Biophys. Chem. 18, 213. 

Weiss, R., Teich, N., Varmus, H., and Coffin, J. Eds.), 1984. RNA Tumor Viruses, Cold 

Spring Harbor (N.Y.). 

Werner, G. (Ed.), 1981. Linear Algebra, New York. 

Wilson, W.D., and Li, K., 2000. Targeting RNA with Small Molecules. . Curr. Med. Chem. 

7, 73-98. 

Y. Marrero-Ponce, a.J.A.C.-G., 2005a. J. Comput.-Aided Mol. Des 

 19, 369. 



 

Y. Marrero-Ponce, M.I.-V., A. Montero-Torres, C. Romero-Zaldivar, C. A. Brandt, P. E. 

Avila, K. Kirchgatter, and Y. Machado, 2005b. J. Chem. Inf. Comput.  Sci 45, 1082. 

Yuan, Z., 1999. Prediction of Protein Subcellular Location Using Markov Chain Models. 

FEBS Lett. 451, 23-26. 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

ANEXES 
(Tables and Figures should be inserted in the main text) 

 
 

Table 1. Five properties of DNA-RNA bases using as labels to characterized each 
nucleotides.  

Purine and pyrimidine 
bases (RNA/ADN) f1 f2

 Є260/1000 ΔE1
 ΔE2

 

Adenine      (A) 0.28 0.54 15.4 4.75 5.99 
Guanine      (G) 0.20 0.27 11.7 4.49 5.03 
Uracil         (U) 0.18 0.3 9.9 4.81 6.11 
Thymine     (T) 0.18 0.37 9.2 4.67 5.94 
Cytosine     (C) 0.13 0.72 7.5 4.61 6.26 

Experimental molar absorption coefficient Є260 at 260 nm and PH = 7.0, first (ΔE1) and second (ΔE2) 
single excitation energies in eV, and first (f1) and second (f2) oscillator strength values (of the first 
singlet excitation energies) of the nucleotide DNA-RNA bases (Pogliani, 2000). 

 



 

Table 2. Representation of the primary and secondary structures of a RNA sequence and its graph 
and bio-macromolecular vectors associated.   

 
5´-AGCGCCU-3´

A1

G2 U7

G4
C3 C6

C5.
5´ 3´

b

a

.
 

 

aPrimary and bsecondary 
structures of a RNA sequence. 
A dot between two base pairs 
means hydrogen-bond 
interactions.  
 

 

C6

C5

C3

G4

G2

A1

U7

5´

3´

 
Bio-Macromolecular graph´s (Gm) 
representation of the left RNA 
sequence. Each sphere represents one 
nucleotide.  Nucleotides are 
covalently linked through 
phosphodiester linkage, represented 
as S. Hydrogen-bonds between bases 
are drawn as continued lines. 

Macromolecular vector:  

mx = [A G C G C C U]; mx ∈ℜ7 

In the definition of mx , as 
macromolecular vector, the symbol of the 
bases is used to indicate the 
corresponding DNA or RNA base 
properties, for instance, f1. That is: if we 
write A it means f1(A), adenine first 
oscillator strength value or some other 
base property, which characterizes each 
nucleotide in the nucleic acid molecule. 
So, if we use the canonical bases of ℜ7, 
the coordinates of any macromolecular 
vector mx coincide with the components 
of that macromolecular vector. 
[Xm]T = [A G C G C C U]  
[Xm]T = transposed of [Xm] and it means 
the vector of the coordinates of mx  in the 
canonical basis of R7  (an 1x7 matrix) 
[Xm]: vector of coordinates of mx in 
Canonical base of  ℜ7(a 7x1 matrix) 

mx , my components are first (f1) and 
second (f2) oscillator strength values, 
respectively. 

mx =[0.28 0.20 0.13 0.20 0.13 0.13 0.18] 

 my =[0.54 0.27 0.72 0.27 0.72 0.72 0.37] 

 



 

Table 3. Values of the total non-stochastic bilinear indices of zero, first and second orders for 
RNA fragment used as example above (see also Table 2). 

Non-stochastic Total Bilinear Indices 
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Table 4. Values of the total stochastic bilinear indices of zero, first and second orders for RNA 
fragment used as example above (see also Table 2). 

Stochastic Total Bilinear Indices 
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Table 5. The zero (M0), first (M1) and second (M2) powers of the local non-stochastic nucleotide 
graph–theoretic electronic-contact matrices of Gm (see also Table 2). 

The zero, first and second powers of the local non-stochastic (nucleotide) matrices 
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Table 5. Cont. 
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Table 6. The zero (sM0), first (sM1) and second (sM2) powers of the local (nucleotide) stochastic 
graph–theoretic electronic-contact matrices of Gm  (see also Table 2). 

The zero, first and second powers of the local stochastic (nucleotide) matrices 
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Table 7. Values of the local non-stochastic and stochastic bilinear indices of zero, first and 
second orders, respectively, for the RNA fragment used as example above (see also Table 2).  

Local Non-Stochastic Bilinear Indices 
Nucleotide ),(0

21 yxb L
ff −  ),(1

21 yxb L
ff −  ),(2

21 yxb L
ff −  

Adenylate (A1) 0.151 0.273 1.571 
Guanylate (G2) 0.054 0.450 1.188 
Cytidylate (C3) 0.094 0.179 0.698 
Guanylate (G4) 0.054 0.179 0.252 
Cytidylate (C5) 0.094 0.183 0.634 
Cytidylate (C6) 0.094 0.447 2.079 
Uridylate (U7) 0.054 0.266 0.626 

RNA fragment 0.594 1.976 7.048 
Local Stochastic Bilinear Indices 

Nucleotide ),(0
21 yxb L

sff −  ),(1
21 yxb L

sff −  ),(2
21 yxb L

sff −  
Adenylate (A1) 0.151 0.084 0.137 
Guanylate (G2) 0.054 0.100 0.075 
Cytidylate (C3) 0.094 0.068 0.081 
Guanylate (G4) 0.054 0.090 0.054 
Cytidylate (C5) 0.094 0.078 0.067 
Cytidylate (C6) 0.094 0.111 0.152 
Uridylate (U7) 0.054 0.086 0.058 

RNA fragment 0.594 0.617 0.618 



 

Table 8. Statistical parameters of the QSAR models obtained, by using different bio-macromolecular descriptors, to describe the 1 
magnitude of the interactions between the aminoglycosides and the packaging region of type-1 HIV. 2 
Methods R2 s q2 scv F Equations bRef. 

0.91 0.08 0.86 0.09 60.71 See Eq. 21 This Report 

Nucleotide Non-Stochastic 
Bilinear Indices 0.92 0.08 0.83 0.10 49.95 

 
(Eq. 23) LogK =  0.450 (±0.098)  
+ 0.008 (±0.001) Є260- ΔE2b0L ),( mm yx  

- 6.98 x 10-4 (±7.0 x 10-5) ΔE1-ΔE2b3L ),( mm yx  

+ 8.76 x 10-4 (± 1.04 x 10-4) f2-ΔE2b5L ),( mm yx  

- 1.50 x 10-5 (±2.0 x 10-6) f2- Є260b7L ),( mm yx  

This Report 

0.84 0.11 0.74 0.12 33.33 

 
(Eq. 23) LogK  =  2.648 (±0.690)  
+ 0.065 (±0.013) f2-Є260 sb0L ),( mm yx  

+ 1.34 x 10-15 (±2.08 x 10-16) f1-Є260 sb15L ),( mm yx  

- 0.017 (± 0.005) f1- f2 sb1L ),( mm yx  

This Report Nucleotide Stochastic Bilinear 
Indices 

0.89 0.10 0.79 0.11 36.88 See Eq. 22 This Report 

Nucleotide Linear Indices 0.87 0.10 0.82 0.108 31.61 

 
LogK = -10.5 (±1.36) 
+ 4.71(±0.57)ΔE1f0L(xm) 
-2.6 x 10-5(±3.35 x 10-6)Є260f5L(xm) 
-0.099(±0.02)Є260f0L(xm) 
-1.915(±0.450)ΔE2f0L(xm) 

(Marrero Ponce et al., 2005) 

Nucleotide Quadratic Indices 0.92 0.07 0.85 0.09 54.91 

 
LogK = -1.3747(±0.3882) 
+0.1136(±0.0189)ΔE1q0L(xm) 
-7.5608 x 10-5(±9.9659 x 10-6) Є260q3L(xm) 
+0.0393(±0.0069) f2 q3L(xm) 
-4.6544(±1.63 x 10-9)ΔE1q10L(xm) 

(Marrero-Ponce et al., 2004d) 

Markovian Negentropies 0.83 0.12 0.83 a 31.48 

 
LogK = 0.693(±0.038) 
+0.338(±0.068)RNAse 
-0.102(±0.025) 1O(Θ10) 
+0.083(±0.035) 4O(Θ8) 

(González-Díaz et al., 2003b) 

Stochastic Spectral Moments 0.91 0.08 0.86 a 50.44 
LogK = 1.023+ 0.52(±0.04)RNAse 
-0.098(±0.01)SRГ0 

+3.606(±1.444) SRГ2 
-3.654(±1.606) SRГ3 

(González-Díaz et al., 2003a) 

aValues are not reported. 3 
bReferences.4 



 

Table 9. Observed, predicted and predicted (after LOO cross-validation procedure) values of 5 
Log K obtained from Eqs. 21 and 22. 6 

NUC Obsa Preb Pre-CVc Pred Pre-CVe 

A235 1.204 1.111 0.118 1.215 -0.015 
A239 1.204 1.147 0.073 1.217 -0.019 
G251 0.447 0.349 0.127 0.323 0.171 
G254 0.447 0.497 -0.056 0.427 0.028 
C267 0.903 0.902 0.002 0.918 -0.021 
A268 0.903 0.984 -0.103 0.892 0.014 
A269 0.903 1.029 -0.173 1.011 -0.127 
A276 0.778 0.721 0.084 1.107 0.215 
A286 0.845 0.854 -0.011 0.765 0.017 
G328 0.845 0.862 -0.019 0.842 0.004 
G329 0.845 0.863 -0.020 0.870 -0.029 
G331 0.845 0.863 -0.020 0.791 0.061 
G333 0.845 0.862 -0.019 0.932 -0.105 
G335 0.778 0.743 0.038 0.757 0.095 
G339 0.778 0.599 0.191 0.753 0.043 
G340 0.778 0.730 0.052 0.588 0.228 
G344 0.845 0.793 0.057 0.767 0.093 
G346 0.845 0.848 -0.003 0.839 0.007 
G363 0.415 0.530 -0.145 0.469 -0.065 
G364 0.415 0.496 -0.097 0.519 -0.146 
G365 0.415 0.526 -0.121 0.607 -0.211 
G366 0.415 0.412 0.004 0.505 -0.117 
G367 0.415 0.391 0.029 0.453 -0.043 

NUC: Nucleotide. The values are aObserved, bPredicted, and cPredicted by LOO cross-validation experiment 7 
procedure for Log K (10-4M-1) (affinity constant of Paromomycin for RNA) by using Eq. 21; dPredicted and 8 
ePredicted by LOO cross-validation by using Eq. 22. 9 
 10 

 11 
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 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 



 

 26 
Figure 1. HIV-1 Ψ-RNA packaging region represented on the TOMOCOMD-27 
CANAR interface. Nucleotides involved in binding and enhancement (structural 28 
changes) for RNAse I are shown as filled circles and triangles, respectively (open 29 
symbols indicates the use of RNAse T1). 30 
 31 




