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Abstract: This study quantifies the carbon monoxide (CO) and nitrogen dioxide (NO2) emissions 

(ECO and ENO2) from fire activities over the contiguous United States (CONUS) in 2020 using the 

total-column CO and NO2 measurements from the TROPOspheric Monitoring Instrument (TRO-

POMI) satellite. The contributions of local emissions, atmospheric transport, chemical loss, and av-

eraging kernel are considered. The emission ratio (ER = ENO2/ECO) is used as a proxy of fire combus-

tion efficiency. Preliminary results show that, TROPOMI ECO shows a similar seasonal variation to 

fire emission inventories with significant enhancements during summertime while TROPOMI ENO2 

shows an opposite trend. TROPOMI ER also shows a significant seasonal variation, introducing the 

capability of attributing fire seasons associated with different fire and land types. 
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1. Introduction 

Fire activities, including wildfires and prescribed fires, are one of the important 

sources of trace gases and aerosols in the US. Wildfires primarily occur in the western 

states during summer and fall associated with forest fires [1]. Prescribed fires, including 

agricultural and deforestation burnings, occur over the southeastern US in winter and the 

central US during springtime mainly associated with savanna and rangeland fires [1]. 

Prescribed fires are commonly used for land management and could reduce the impacts 

of wildfires by consuming accumulated fuels [2,3]. Also, prescribed fires are usually better 

managed under specific meteorological conditions (e.g., air temperature less than 80 °F/27 

°C) and are less intense compared to wildfires. 

Most of the current fire emission inventories estimate fire emissions based on total 

burned area, fuel loadings, fractions of burned fuels, and compound-specific emission fac-

tors. The uncertainties of estimation of burned loadings and assumptions of compound-

specific factors lead to various results from different emission inventories. Recently, the 

total-column CO and NO2 measurements from TROPOMI, launched in October 2017, are 

often used for the estimation of anthropogenic and fire emissions [4–6]. The state-of-the-

art techniques, daily global coverage, and fine spatial resolution offer the opportunity to 

directly estimate fire emissions from space. Also, the ratio of NO2 and CO emissions could 

Academic Editor(s): Anthony Lupo 

Published: 14 July 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: ©  2022 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Proceedings 2022, 69, x FOR PEER REVIEW 2 of 7 
 

 

be used as a proxy of fire combustion efficiency and is able to identify the spatiotemporal 

variabilities of fire characteristics [7,8]. 

In this study, the total-column CO and NO2 measurements from TROPOMI are used 

to quantify the daily CO and NO2 fire emissions (ECO and ENO2) and emission ratio (ER = 

ENO2/ ECO) over CONUS in 2020. Results are compared with five fire emission inventories, 

including the preliminary 2020 National Emissions Inventory (NEI) from the United 

States Environmental Protection Agency (US EPA) (https://www.epa.gov/air-emissions-

inventories/2020-national-emissions-inventory-nei-documentation), the Blended Global 

Biomass Burning Emissions Product (GBBEPx) [9], the Fire INventory from NCAR (FINN) 

[10], the Global Fire Assimilation System (GFAS) [11], and the Quick Fire Emissions Da-

taset (QFED) [12]. 

2. Datasets and Methods 

2.1. Data Selection 

TROPOMI CO and NO2 measurements with quality flag larger than 0.7 and 0.75, re-

spectively, are selected for clear and thin cloud conditions. Measurements over snow- and 

ice-covered surface are removed. These measurements are further gridded to 0.1 × 0.1 de-

gree to be consistent with emission inventories. Additionally, to remove the influence of 

local emissions from sources other than fire activities, the annual median values (Xannual) 

of no-fire days (days without fire records) at each grid are determined and subtracted 

from the measurements (Xmeasure). 

Fire points, reported in EPA NEI, with fire radiative power (FRP) from GBBEPx ex-

ceeding the 95th percentile (~65 MW) are selected to focus on well-identified fire activities. 

These fire points are categorized into 10 regions according to the US EPA regional offices 

(https://www.epa.gov/aboutepa/regional-and-geographic-offices). Inventory NOx and 

NO emissions, except for FINN, are converted into NO2 emissions by using a ratio of 

NO:NO2 of 85:15 [13,14]. Note that, although EPA NEI reports near-surface fire emissions 

in tons, they are expected to be correlated with satellite-based and inventory emissions. 

2.2. Emission Estimation 

Based on Lama et al. (2020) [7] and van der Velde et al. (2021) [8], ECO and ENO2 are 

calculated as: 

𝐸𝑖 = ∆𝑋𝑖 ×
𝑈

𝐿
× 𝐾𝑖[𝑂𝐻] [𝑚𝑜𝑙 𝑐𝑚2𝑠−1] (1) 

𝐾𝐶𝑂 = 1.1 × 10−12 × (
𝑇

300
)1.3 [𝑐𝑚3𝑚𝑜𝑙−1𝑠−1] (2) 

𝐾𝑁𝑂2 = 2.8 × 10−11 [𝑐𝑚3𝑚𝑜𝑙−1𝑠−1] (3) 

where i refers to CO and NO2, X is the total-column density after subtracting annual me-

dians (X = Xmeasure − Xannual), U and T are the integrated wind speed and air temperature 

from the surface to 7000 m a.g.l. from the High-Resolution Rapid Refresh (HRRR; 

https://rapidrefresh.noaa.gov/hrrr/), L is the diameter of the fire center which is 0.1 degree 

(~ 11 km) in this study, Ki is the Xi-OH reaction rates reported in Burkholder et al. (2015) 

[15], and [OH] is the OH column-average concentration within the planetary boundary 

layer (PBL) which is 1.5 × 107 mol cm−3 [7] in this study. In Equation (1), the term ∆X rep-

resents the difference between fire areas (Xfire) and the background (Xbackground). The terms 

U/L and Ki[OH] represent the effect of atmospheric transport and chemical loss, respec-

tively. To determine Xfire and Xbackground for CO, a 5 × 5 degree fire box with fire point as the 

center and a 3 × 3 degree upwind box are selected. The upwind box is determined by the 

skirt distance (5 + 3 degree) and column-average horizontal wind from the surface to 7000 

m a.g.l., which is assumed to be consistent during the day. As for NO2, since NO2 has a 
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relatively short lifetime (3–10 h) and is less affected by atmospheric transport, a 3 × 3 de-

gree fire box is used while the size of upwind box and skirt distance are the same as CO. 

For each selected fire point, Xfire and Xbackground are calculated as the averages of fire and 

upwind boxes, respectively. 

The averaging kernel (A) is often used in the satellite retrieval processes to describe 

the sensitivity of total-column measurement to the changes in vertical profile. The appli-

cation of A could strongly affect the result of satellite retrievals. Thus, to compare with 

emission inventories, TROPOMI ER is corrected by taking satellite averaging kernel into 

account: 

𝐸𝑅 =
𝐸𝑁𝑂2

𝐸𝐶𝑂

1

(1 − 𝐴𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒)
 (4) 

where Ainfluence states for the influence of satellite averaging kernel, which is 9% adopted 

from Lama et al. (2020) [7]. 

3. Preliminary Results 

3.1. Comparison between TROPOMI and Emission Inventories 

TROPOMI ECO, ENO2 and ER are compared with five fire emission inventories (EAP 

NEI, GBBEPx, FINN, GFAS, and QFED). To reduce the uncertainties due to atmospheric 

transport, regional daily averages of ECO, ENO2 and ER are calculated assuming that nearby 

fires share the same fire characteristics. Overall, TROPOMI emissions are much lower 

than emission inventories, except for EPA NEI. For ECO (Figure 1(a-1)), GBBEPx, FINN, 

GFAS, and QFED are on average 20.5, 25.7, 3.8 and 5.8 times of TROPOMI, respectively. 

TROPOMI ECO shows moderate linear correlations with emission inventories with corre-

lation coefficients (Rs) around 0.3. Also, a clear seasonal variation is found for all datasets 

(Figure 1(a-2)) with significant enhancements during summer. 

 



Proceedings 2022, 69, x FOR PEER REVIEW 4 of 7 
 

 

Figure 1. Scatter plots and timeseries of (a) ECO, (b) ENO2, and (c) ER of TROPOMI and five fire emis-

sion inventories. Colors state for different data sources. 

For ENO2 (Figure 1(b-1)), GBBEPx, FINN, GFAS, and QFED are on average 124.5, 

239.7, 9.0 and 15.1 times of TROPOMI, respectively. TROPOMI shows negative correla-

tions with GBBEPx, FINN and GFAS with Rs around −0.1–−0.2, and nearly no correlation 

with QFED with a R of 0.04. Inventory ENO2s share a similar seasonal variation with ECOs 

(Figure 1(b-2)), as they are estimated by assigning burned fractions in total biomass load-

ing for different species. However, TROPOMI ENO2 does not show such variation and is 

even slightly lower during summertime, which is opposite to ECO. It is probably because 

of the higher NO2 background level during summer due to increasing anthropogenic and 

biogenic NOx emissions at high temperatures [16]. Since the emission estimation used in 

this study is based on the differences between fire regions and the background, a high 

background level could make such differences less significant, leading to an underestima-

tion of ENO2. 

As for ER (Figure 1(c-1)), inventory ERs fall in specific ranges probably due to the 

prescribed emission factors used in emission estimation. For instance, QFED ER shows a 

range of 0.003–0.006, corresponding to the ratios of NO2 to CO emission factors which are 

0.002 and 0.006 for tropical forest and savanna, respectively [12]. In addition, affected by 

the seasonal variation of ECO and ENO2, TROPOMI ER is higher during March–June and 

significantly lower in August and September (Figure 1(c-2)), showing the capability of 

distinguishing different fire seasons. Although the ERs are relatively consistent compared 

to TROPOMI, FINN, QFED, and EPA NEI also show a similar seasonal variation to TRO-

POMI with the lowest ERs during summer. 

3.2. Capability of TROPOMI ER of Distinguishing Fire and Land Types 

To further investigate the capabilities of TROPOMI ER, results for two fire types iden-

tified in EPA NEI, wildfire and prescribed fire, and four land types identified in QFED, 

tropical forest (TF), extratropical forest (XF), savanna (SV), and grassland (GL), are ana-

lyzed. 

Figure 2a illustrates the boxplots of TROPOMI ECO, ENO2 and ER for different fire 

types. The averages of ECO and ENO2 for wildfire (prescribed fire) are 0.009 ± 0.015 mmol 

m−2 s−1 (0.003 ± 0.003 mmol m−2 s−1) and 0.004 ± 0.004 × 10−3 mmol m−2 s−1 (0.018 ± 0.013 × 10−3 

mmol m−2 s−1), respectively. These results are consistent with previous studies with higher 

ECO and lower ENO2 for wildfire compared to prescribed fire [17–19]. Although the average 

ECO for wildfire is 3-folds of prescribed fire, the medians for two fire types are comparable 

(0.004 mmol m−2 s−1 for wildfire and 0.003 mmol m−2 s−1 for prescribed fire), indicating a 

similar base condition of two fire types and the possible contribution of extreme wildfire 

events. The high ENO2 for prescribed fire may partly be due to the larger fraction of smol-

dering combustions compared to wildfire. According to Lobert and Warnatz (1993) [13], 

NO2 contributes up to 40% of total NOx emissions in smoldering combustions, and 

around 14% in flaming combustions which are dominant in wildfires. However, the dif-

ference of the contributions of CO in total carbon emissions in two combustions is less 

significant (2–15%), resulting in a relatively small difference of ECO between two fire types. 

Moreover, ER is lower for wildfire with an average of 0.003 ± 0.008 and higher for pre-

scribed fire with an average of 0.017 ± 0.048, introducing a good capability of distinguish-

ing two fire types. 

Figure 2b illustrates the boxplots of TROPOMI ECO, ENO2 and ER for the four land 

types defined in QFED. Since there is no TF identified over CONUS, only XF, SV and GL 

are discussed here. Overall, XF shows higher ECO and lower ENO2 with averages of 0.011 ± 

0.017 mmol m−2 s−1 and 0.005 ± 0.004 × 10−3 mmol m−2 s−1, respectively. GL shows the lowest 

ECO and the highest ENO2 with averages of 0.004 ± 0.005 mmol m−2 s−1 and 0.010 ± 0.010 × 

10−3 mmol m−2 s−1, respectively. This is consistent with the emission factors used in the 

selected emission inventories [9–12] and reported in previous studies [20,21]. Laboratory 
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experiments also found higher ECO and lower ENO2 for boreal forest fires compared to 

grassland fires [22]. Therefore, XF shows the lowest ER while GL shows the highest ER 

with averages of 0.002 ± 0.003 and 0.019 ± 0.079, respectively, indicating the potential of 

ER of identifying different land types. Note that the land type categorization does not 

consider fire types. For instance, GL fires could be actually a combination of wildfires and 

prescribed fires. It may introduce uncertainties to the land type identification merely 

based on TROPOMI ER. 

 

Figure 2. Boxplots of ECO, ENO2 and ER associated with (a) two fire types and (b) four land types. 

4. Conclusions 

This study estimates CO and NO2 fire emissions and uses emission ratio (ER) as the 

proxy of combustion efficiency using the total-column CO and NO2 measurements from 

TROPOMI over CONUS in 2020. Preliminary results show that TROPOMI ECO and ENO2 

are 4–26 and 9–240 times lower than fire emission inventories on average. TROPOMI ECO 

shares a similar seasonal variation with emission inventories with significant enhance-

ments in August and September, while TROPOMI ENO2 shows an opposite trend. As a 

result, TROPOMI ER peaks in March–June and is significantly lower during summertime, 

showing the capability of distinguishing fire seasons associated with different fire types. 

The potential of TROPOMI ER is further examined by attributing different fire and land 

types. TROPOMI ER is lower for wildfires (extratropical forest fires) with an average of 

0.003 ± 0.008 (0.002 ± 0.003) and higher for prescribed fires (grassland burnings) with an 

average of 0.017 ± 0.048 (0.019 ± 0.079). It indicates that, except for land type which is 

commonly used as the reference for fire categorization, fire type could be an important 

factor determining fire emissions. Also, TROPOMI ER could be a useful input and im-

prove the understanding of fire characteristics in fire activity models. 
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