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Abstract: In recent years, the stochastic model has been growing due to the high complexity and 

dynamics of the atmosphere, especially the rainfall process. Various concepts have been applied to 

rainfall modeling, ranging from simplistic approaches to more complex models. It is important to 

understand different stochastic rainfall modeling approaches as well as their advantages and 

limitations. This paper determines the development of the latest stochastic rainfall models in the 

Asia region, where different concepts of stochastic rainfall models were highlighted. It reviews 

different methodologies used, including rainfall forecasting, spatio-temporal analysis, and extreme 

event. We selected 30 articles from 1571 literature published between 2013–2022 from the Scopus 

database. The results show that the stochastic models often used in the literature consist of Markov 

Chain, Weather Generator, Probability Distribution, ARIMA, and Bayesian Model. In the recent 

development in Asia, stochastic models in rainfall modeling research are widely used to generate 

the occurrence and amount of rainfall data, statistical downscaling, future rainfall trends, and 

estimation of extreme values. The difference in Spatio-temporal, climate conditions, and the 

parameters model cause the performance of each model can be different. 
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1. Introduction 

The development of a climate model is an attempt to simplify the understanding of 

the climate system. Stochastic models are now an important topic in climate research and 

are starting to be widely used in more comprehensive climate predictions. Stochastic 

methods for numerical weather and climate prediction allow for an accurate representa-

tion of uncertainty, reduced bias, and improved representation of long-term climate var-

iability. Research related to systematic reviews of stochastic climate models, especially 

rainfall models, is not yet available for the Asian region. The stochastic model method 

and assessing the accuracy of the output from these models will provide an overview of 

the robustness of the stochastic model in representing the rainfall model. 

2. Methodology 

The authors used the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) approach to search and select literature samples. PRISMA has 3 steps 

[1]: (1) identification, (2) screening, and (3) included. This study mainly focuses on the sto-

chastic climate model in Asia countries. After the screening process, we chose 30 articles 

representing 14 different journals with journals the Journal of Hydrology (23%), the Inter-

national Journal of Climatology (13%), and Theoretical and Applied Climatology (13%). 
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Figure 1. Flowchart outlining Protocol of Review using PRISMA. 

3. Results 

Several studies mostly use stochastic rainfall models for downscaling rainfall data 

[2–5] and generating the occurrence and amount of rainfall data [6–10]. Regression models 

and stochastic weather generators are the most widely used statistical downscaling meth-

ods [3,4]. Markov chain is the most popular technique to generate rain occurrence because 

it is easy and simple [5,6,8,9] Meanwhile, a probability distribution generates rainfall 

amounts [2,6,9]. 

3.1. Markov Chain 

The Markov chain defines the state of a particular day as a “wet” or “dry” day and 

describes the relationship between today’s state and the previous day. The use of previous 

rainfall data was quite varied, such as 1 day [2,6], 0–3 days [8], and 0–5 days before [9]. 

Most of the Markov chain models mentioned in the literature are first-order models. Alt-

hough the first-order is satisfactory, the most prolonged simulated dry spell results are 

slightly shorter than the observed results, which may be due to the short-term memory of 

the first-order Markov model [6]. The solution is to use a Markov chain of order 2 or higher 

to overcome this limitation. In tropical areas such as Malaysia, the second-order Markov 

chain has the most optimum value for estimating monthly rainfall, while the third-order 

is best for estimating annual rainfall [9]. While in sub-tropical areas, which have 4 seasons, 

the prediction of daily rainfall in summer is better than in other seasons [8]. 

Along with the development of stochastic model research, the use of Markov chain 

models has been modified to improve its accuracy, such as Modified Markov Models 

(MMM) [2], Hidden Markov Model (HMM) [11], Non-Hidden homogeneous Markov 

Models (NHMM) [12], Decadal and Hierarchical Markov Chain (DHMC) [13], Stochastic 

Daily Rainfall Model—Markov Chain Rainfall Event Model (SDRM-MCRE) [5]. MMM in-

cludes atmospheric predictors that predict the effect of changing climatic conditions and 

other variables to represent specific rainfall characteristics. HMM contains hidden and 

unknown parameters (event). Compared to the HMM, the NHMM model introduces non-

homogeneity by allowing for different components in the transition matrix or emission 

matrix, depending on other relevant variables. SDRM-MCRE can comprehensively main-

tain the rainfall characteristics of the rainfall time series (e.g., monthly mean rainfall and 

extreme rainfall percentiles) and rainfall event characteristics (e.g., different classes of 

rainfall duration, rainfall depth, rainfall intensity, and drought). 
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3.2. Probability Distribution 

Parametric probabilities usually used to generate rainfall amounts include one-pa-

rameter distributions such as exponential [6,9], two-parameter distributions such as 

Gamma [2,5,6,9,13], Weibull [6,14], Normal/Gaussian [2,12], Log-normal [9], and the dis-

tribution of three parameters such as Mixed exponential [6,9,14], Hybrid Exponential 

[6,9,11], and normal Skewed [6,9]. Meanwhile, K-Nearest Neighbor is commonly used in 

nonparametric probabilities [10]. 

Most studies state that distribution with three parameters shows better results than 

other models [6,14]. Three-parameter distributions, especially the Mixed exponential dis-

tribution, perform better in reproducing the daily rainfall variance in subtropical regions 

such as China. In contrast, the skewed normal and Weibull distributions better simulate 

extreme rainfall characteristics at >95th percentile [6]. In the tropics, Mixed Exponential 

(three parameters) is very suitable for estimating the average and maximum values on an 

hourly scale quite well compared to Weibull (two parameters) [14]. 

Spatiotemporal differences also affect the application of the distribution model so 

that not all three-parameter distributions are always better. For example, in the Kelantan 

watershed, Malaysia, the Mixed exponential distribution was not chosen as the best dis-

tribution. Statistical tests proved no significant difference between the performance of 

one, two, and three-parameter distributions [9]. At extreme values, the exponential (1 pa-

rameter) and log-normal (2 parameters) distributions perform better than other distribu-

tions [9], while the double gamma distribution (2 parameters) can capture extreme rainfall 

as well as average rainfall at the same time [5]. 

3.3. Stochastics Weather Generator 

Different types of weather generators use two approaches, namely Markov chain 

[6,7,16] and spell length [3,7]. Markov chain approaches like WGEN, CLIMGEN, CLIGEN, 

WeaGETS, MulGETS, and spells length approaches like LARS-WG are most widely used. 

From several studies, models based on the spell length approach, such as LARS-WG, have 

worse performance than Markov chain-based models like WeaGETS [7] and SDSM, a hy-

brid model that combines a regression model and stochastic weather generators [3]. 

Chen and Brissette [7] compared 5 weather stochastics to generate rainfall data in 

China’s Loss Plateau. The WGEN, CLIMGEN, and CLIGEN use first-order 2-state Markov 

chains to generate precipitation events. In calculating the amount of rainfall, WGEN uses 

the Gamma, CLIMGEN uses the Weibull, while CLIMGEN uses the Skewed normal. 

WeaGETS uses a combination of third-order Markov chains and a mixed exponential dis-

tribution. For simulating daily rainfall amounts, weather generators based on three-pa-

rameter (CLIGEN and WeaGETS) generally perform better than two-parameter distribu-

tions (WGEN and CLIMGEN), especially in simulating extreme rainfall. 

Stochastics Weather generators commonly used for Multisite are MSRG [17] 

MulGETS [16], and the new multivariate-multisite WG [18]. MSRG can simultaneously 

simulate the spatial dependence of the occurrence and amount of multisite daily rainfall 

using the SSRN method. MSRG also has the potential to be applied in relatively large 

basins or areas [17]. MulGETS is an extension of SSWG created by driving a single site 

model with temporally dependent and spatially correlated random numbers. Ahn [18] 

combines annual and daily weather generators to overcome the limited variability of low-

frequency climate variables and generate extreme rainfall events. 

The STREAP WG model for remote sensing data such as radar [19] was used to meas-

ure the sub-pixel variability of the radar from extreme rainfall to downscaling the radar 

rainfall recorded at a particular pixel. Peleg and Morin [20] developed a slightly different 

WG based on rainfall field analysis derived from weather radar data in addition to syn-

optic parameters that explicitly represent convective rain cell elements that are known to 

have a significant impact on the catchment hydrological response. HiReS-WG is used to 

periodically generate rain fields with a high spatial and temporal resolution. 
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3.4. ARIMA 

ARIMA is a typical statistical analysis model that uses time-series data to predict fu-

ture trends. The ARIMA model approach can outperform most other statistical models, 

such as in hydrological time series. The relative advantage of the ARIMA model is due to 

its statistical nature, as well as the well-known methodology in building the model [21]. 

The ARIMA model is a combined model between Autoregressive (AR) and Moving Av-

erage (MA) as well as an order d differencing process for data at seasonal and non-sea-

sonal levels and is included in the linear forecasting group [8]. The ARIMA model is a 

model that has been widely applied in rainfall data analysis for various purposes, espe-

cially in drought analysis [21,22]. ARIMA model is a time series forecasting approach. 

3.5. Bayesian 

The Bayesian approach is used in many hydrological studies such as uncertainty 

quantification, water quality modeling, and hydroclimatic analysis. One of the studies 

was carried out by developing a Bayesian model to evaluate changes in the maximum 

thickness of seasonally frozen ground (MTSFG) [23]. The application of this Bayesian 

method has been used to estimate snow depth and soil organic carbon content in perma-

frost areas using the Markov Chain Monte Carlo (MCMC) sampling method [24,25]. 

Currently, the use of the Bayesian model has been modified to improve its accuracy 

in rainfall analysis. Some of those mentioned in the literature are the Gaussian Copula 

Model, the Bernoulli-Gamma hierarchical Bayesian Model, and the Bayesian-Time Vary-

ing Downscaling Model (TVDM). The use of the Gaussian Copula model to explore future 

extreme rainfall changes [26]. In addition, this Gaussian Copula can be used as a new 

scheme to correct for biases in the spatial correlation as well as the marginal distribution 

of the simulated rainfall. Bernoulli-Gamma hierarchical Bayesian Model was used to sim-

ulate rainfall to build a hierarchical Bayesian mixture model for daily rainfall forecasts 

using endogenous and external information [27]. The proposed Bayesian-Time Varying 

Downscaling Model (TVDM) is used to derive monthly rainfall in India using the large-

scale output of general circulation models (GCM) [28]. The methodology proposed by 

TVDM was developed using a Bayesian approach in updating the parameters previously 

adopted in the Bayesian dynamic linear model. 

3.6. Strengths and Limitation Model 

Markov chain has the advantages of being easy to use, able to simulate rainfall in the 

station network while maintaining influential spatial attributes, maintaining rainfall char-

acteristics from the rainfall time series, having great potential to be used for flood and 

drought risk assessment, and being able to simulate monthly and annual rainfall events. 

The ARIMA model in the literature is mainly carried out in dry areas (Pakistan, Saudi 

Arabia and Iraq). This is because ARIMA can forecast drought on different timescales and 

outperform most other statistical models. The model’s weakness is that it cannot predict 

for long periods. The WG model is excellent for generating data in small areas. The Bayes-

ian model found in this literature review contains pure Bayesian but also a combination 

model, like TVDM and the Bayesian NHMC. WGs are appropriate for climate change pro-

jections because their time-varying components allow for variations in transition proba-

bilities or emission probabilities depending on external factors. In the k-nearest neighbor 

resampling, little effort is needed to estimate the parameter. This model can be an excellent 

alternative to simulating multisite pre-precipitation events. 
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Table 2. Strengths and limitations of the stochastic model. 

Model Strengths Limitations 

Markov 

Chain 

● good in simulating monthly and annual rainfall 

events 

● suitable for a comprehensive tropical monsoon 

climate 

● maintains rainfall characteristics from time 

series and rainfall events 

● suitable for flood and drought risk assessment   

● not accurate enough to run on areas 

with higher spatial and time scales. 

● GCM selection is still influenced by 

the availability of atmospheric variables 

on a daily time scale,  

● The model tends to ignore variations 

in low-frequency rainfall. 

Weather 

Generator 

● suitable for a local and heterogeneous area 

● suitable for long-term approach (including 

climate change) 

● has little average difference and is capable of 

capturing daily rainfall 

● able to simulate extreme precipitation 

● suitable in semi-arid areas.  

● The model does not automatically 

determine the best limits, biases, and 

variances. 

● The selection of predictors is still 

poor 

● models often tend to underestimate 

extreme data. 

ARIMA 

● capable of forecasting drought at different time 

scales.  

● Widely used in arid areas 

● ARIMA model offers various advantages over 

other approaches (such as moving averages, 

exponential smoothing, and neural networks, 

including predicting and more information about 

time-related changes) 

● This model shows significant 

limitations for understanding the time 

series of generated rainfall. 

Bayesian 

● can combine multiple bias corrections 

simultaneously 

● Can project rainfall intensity with the effects of 

climate change.  

● effective for limited observations in cold areas 

● daily rainfall forecasts are still a 

challenge 

Probability 

Distribution 

● Generate good correlations 

● not much effort is required to estimate 

parameters,  

● suitable for simulating multi-site pre-

precipitation events 

 

4. Conclusions 

Research related to stochastic models on rainfall modeling in the Asian region is a 

very complex study. The variety of scopes, approaches, focuses, methodologies, and lim-

itations used in rainfall modeling hinders a common understanding of the stochastic mod-

els used. The results of the study indicate that the research objectives of using stochastic 

models in rainfall modeling research include climate data generator, statistical downscal-

ing, future rainfall trends, estimation of extreme values, and so on. Of these purposes, the 

stochastic model is the most widely used for climate data generation and statistical 

downscaling. The rainfall data generator is used to estimate the occurrence and amount 

of rainfall. Various stochastic models that are often used in the literature consist of Markov 

Chain, Weather Generator, Probability Distribution, ARIMA, and Bayesian Model. The 
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performance of these stochastic models will be different for each region in Asia. The spa-

tiotemporal differences, the study area, and the use of parameters can be the cause of the 

difference in the results of each model. The stochastic model is easy and good to use and 

the temporal, spatial scale, and type of model can be adapted to the research objectives, 

where the more combinations of models the better the results. Therefore, in general, the 

stochastic model is very flexible depending on user needs. 
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