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ABSTRACT 
A new set of amino-acid based bio-macromolecular descriptors support on a 

bilinear map are presented. This novel approach to bio-macromolecular design from a 
linear algebra point of view is relevant to protein QSAR/QSPR studies. These 
biochemical descriptors are based on the computation of bilinear maps on ℜ n 

[ ),( mmkm yxb : ℜ
n x ℜ n → ℜ ] in canonical basis. Protein’s bilinear indices are 

calculated from kth power of non-stochastic and stochastic graph–theoretic electronic-
contact matrices, k

mM  and k
m

s M , respectively. That is to say, the kth non-stochastic and 
stochastic protein’s bilinear indices are calculated using k

mM  and k
m

s M  as matrix 
operators of bilinear transformations. Moreover, biochemical information is codified by 
using different pair combinations of amino-acid properties as weightings (z-values, side-
chain isotropic surface area (ISA), amino-acids atomic charges (ECI) and hydrophathy 
index (Kyte-Doolittle scale; HPI). Quantitative models that discriminate near wild-type 
stability alanine-mutants from the reduced-stability ones in training and test series were 
obtained. Non-stochastic and stochastic equations permitted the correct classification of 
100% (41/41) and 97.56% (40/41) of proteins in the training set, respectively. Correct 
classification in test sets were 91.67% for both models. In order to predict Arc alanine-
mutant’s melting temperature (tm), lineal regression models were developed. The linear 
model obtained by using non-stochastic bilinear indices explains almost 84% of the 
variance of the experimental tm (R = 0.91 and s = 4.50oC) as long as the stochastic 
bilinear indices-based equation describe 81% of the tm variance (R = 0.90 and s = 
5.01oC). The Leave-one-our press statistics, evidenced high predictive ability of both 
models (q2 = 0.73 and scv = 4.50 oC for non-stochastic and q2 = 0.64 and scv = 5.01 oC 
for stochastic bilinear indices). Moreover, non-stochastic and stochastic protein’s 
bilinear indices produced rather linear piecewise regressions (R of 0.95 and 0.96, 
correspondingly) between protein-backbone descriptors and tm values for alanine-
mutants of Arc repressor. Both obtained break-point values were 51.87oC and 
characterized two mutant’s clusters as well as coincided perfectly with the experimental 
scale. Therefore, we can use the linear discriminant analysis and piecewise models in 
combination to classify and predict the stability of the mutant Arc homodimers. 
Protein’s bilinear indices models compared favorably with several bio-macromolecular 
descriptors previously reported. These models also permitted the interpretation of the 
driving forces of such a folding process, indicating that topologic/topographic protein’s 
backbone interactions control the stability profile of wild-type Arc and its alanine-
mutants.  
 

 

Keywords: Protein Stability, Arc Repressor, Alanine-Substitution Mutant, 
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Analysis, Linear Multiple Regression, Piecewise Linear Regression.  
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1. INTRODUCTION 

Knowledge of relationship between protein stability and structural features are 

useful in biotechnology and pharmaceutical industries. Its understanding might allow 

improving efficiency of synthesis, purification and storage processes so as development 

of more effective drugs against many diseases. Taking into account the above, we can 

understand why prediction of protein structure, stability and its specific ligand-binding 

arise as the main goal of protein science.[1] 

Development of genetic and protein engineering facilitate the studies about how 

structural-changes affect protein functions and the first tentative steps protein design are 

underway. Moreover, knowledge of factors that determine the stability of a particular 

protein enables us to find out important features concerning their structure and function. 

Theoreticians use derived data from protein engineering experiments to benchmark in 

silico calculations that will eventually be used for designing rational changes in protein 

stability. In fact, predicting protein structures and stability is a fundamental goal in 

molecular biology nowadays. Even predicting changes in structure and stability induced 

by point mutations has immediate application in computational protein design.[2-5] 

Although free energy simulations have accurate predicted relative stabilities of point 

mutants,[6, 7] the computational cost that the most of the methods actually demand are 

extremely high to test the large number of mutations studied in protein design 

applications.  

In this context, the computational study of structure/stability relationships has 

become an important area in protein science. Numerous researchers worldwide have 

worked out models to predict the stability of mutants of a wild protein. For instance, 

Shortle et al. have studied 118 mutants of Staphylococcal nuclease. Similarly, other 

researchers have modelled the stability of 145 mutants of T4 Lysozyme, 96 mutants of 
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Barnase, and 71 mutants of Chymotrypsin in what seem to be the models with the 

largest mutated proteins. Another important study involved modeling the stability of 66 

mutants of GeneV, 65 mutants of Human lysozyme, and 58 mutants of protein L. Other 

noteworthy studies concerned 40 mutants of Trypsin inhibitor, 38 mutants of TNFn3, 

and 31 mutants of FKBP12. Models have also been reported for proteins with more than 

10 mutants but fewer than 30, such as ACBP, Ribonuclease T1, Ribonuclease H, α-

Lactalbumin, Hen Lysozyme, Subtilisin inhibitor, U1A, ISO-1 cytochrome C, and Trp 

synthase. Other, less-mutated proteins that have been studied include CD2, Calbindin, 

Apomyoglobin, Adrenodoxin, Cold shock, ribonuclease A and λ-CRO. As summarized 

in Zhou and Zhou’s excellent work, a total of 35 proteins with their respective 1023 

mutants have been studied and these include all of the examples outlined above. In their 

review, Zhou and Zhou not only provide an excellent overview of this field but also use 

the data from the 1023 mutant stability tests to develop what seems to be one of the 

largest unified models to date.[8]  

Others important approaches for predicting protein stability are based on Force 

fields by using fast algorithms for protein energy calculations. Examples of such 

algorithms are the helix/coil transition algorithm AGADIR[9] or FOLDEF, a fast and 

accurate EEEF (empirical data-based energy function) approach based on AGADIR 

algorithm that uses a full atomic description of the structure of the proteins reported by 

Guerois et al. for predicting conformational stability of more than 1000 mutants.[10] 

Otherwise, Gromiha et al. reported stability prediction studies not based on protein 

force-field calculations but focused on correlations of free energy change with 3D 

structure, sequence information and amino acid properties such as hydrophobicity, 

accessible surface area, etc.[11, 12] Recently, Frenz[13] reported an Artificial Neural 

Networkbased model for predicting the stability of Staphylococcal Nuclease mutants by 
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using amino-acid similarity scores as network inputs. Besides, by using a combination 

of neural network and support vector machine predictors as well as sequence and 3D 

structure information from a data set of more than 2000 mutants, Capriotti et al.[14, 15] 

described the change of protein free energy changes upon mutations. More recently, 

Fernádez et al.[7] reported the used of Bayesian-regularized genetic neural networks for 

modelling protein conformational stability of Chymotrypsin inhibitor 2 mutants. In this 

manuscript, the authors redefined a well-know 3D-molecular descriptors (radial 

distribution function) for small-to-medium organic molecules to codify the 3D 

molecular structure of proteins. In connection with, is rather important remarkable that 

although the search of novel molecular descriptors to seek quantitative-structure–

activity-relationships QSAR nowadays constitutes a widely covered field with more 

than 1000 molecular descriptors introduced,[16] the search for newer molecular 

descriptors for proteins can be classified as an emerging area, being a pioneering work 

the one on the radius of gyration reported by Flory.[17] More recently, other approaches 

have been put forward as potential sources for successful biopolymer descriptors, such 

as Roy et al.,[18] Casanovas et al.,[19] and Leong and Mogenthaler representations;[20] 

Arteca’s average over crossing number,[21] Randic’s band average widths,[22] the 

sequence-order-coupling numbers,[23] folding degree index (I3)[24] Kyle–Doolittle 

hydrophobicity,[25] and so on. In this sense, the approach of redefinition of old 

molecular descriptors, that has been successfully used for long-time ago in 

QSAR/QSPR studies, into new protein indices is a good alternative and an active field 

in protein science. In this context, some specific and very successful indices (for small 

molecules) that use the concept of Shannon’s entropy from the point of view of the 

information theory have proven to be very effective in drug design[26, 27] and has been 

recently redefined in order to characterized the molecular structure of proteins.[28-30] 
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In these studies, the researchers attempt to extend your method to encompass protein 

stability studies—specifically how alanine substitution mutation on Arc repressor 

wildtype protein affects protein stability–by means of Linear Discriminant Analysis 

(LDA). The Arc repressor protein provides an attractive system in which to address this 

issue because it is small (53 AAs), and amenable to genetic and biophysical studies[31-

36] This is a homodimer protein with a globular domain formed by the intertwining of 

their monomers. Its secondary structure consists on two anti-parallel β-sheets from 

residues 8-14, and α-helices formed by residues 15-30 and 32-48.[31-36] 

Recently, one of present author, M-P, Y., also redefined two molecular descriptors 

families, namely atom- and bond-based quadratic and linear indices,[37-43] like bio-

macromolecular indices.[44-47] In these studies, our group proposed a novel extended 

method to represent and to codify (translation of molecular structure into numerical 

parameters) the molecular structure of proteins and nucleic acids, in which each amino-

acid residues can be depicted using a lower level representation, that is, a pseudo-atoms 

rather than by an all-atom representation. This approach has been successfully 

employed in bioinformatics studies showing promising results in the modeling of the 

interaction between drugs and HIV packaging-region RNA and Arc repressor 

stability.[44-47]  Newly, the present author purposed a novel algebraic algorithm like a 

extended and generalized form of precedent bond- and atom-based  molecular indices 

for small-to-medium organic-chemicals, namely global (total) and locals (i.e., atom- or 

bond-type, group-type, etc) molecular bilinear indices.[48-52] These new molecular 

descriptors based on the linear algebra theory (bilinear map) and discrete mathematics 

(graph-theory) describes changes in the electron distribution with time throughout the 

molecular backbone (graph–theoretic electronic–structure models) and the complete 

model (application) can be seen as an intermediate between the quantitative quantum-
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mechanical Schrödinger equation and classical chemical bonding ideas.[53] It has been 

successfully employed in QSPR/QSAR studies,[48-52] such as: a) The fast-track 

experimental discovery of novel tyrosinase inhibitors drug-like compounds,[49, 51] b) 

biosilico discovery by using virtual screening of new trichomonacidals,[52] c) 

Codification of chirality and other 3D structural features constitutes,[50] d) others 

application in course. Finally, but not less, the molecular bilinear indices has shown 

better behaviour in the description and prediction the several properties/activities than 

their counterparts quadratic or linear maps as well as with others 0D-3D molecular 

descriptors.[48-52]     

Therefore, the main purpose of the current paper is to present new extended sets of 

bio-macromolecular descriptors, namely non-stochastic and stochastic protein bilinear 

indices and establish their abilities (both total and local) for the description of the 

macromolecular structure by predicting protein stability effects of a complete set of 

Alanine substitutions in Arc repressor. This study also permit to compare our novel 

approach to others reported up to now for this in silico experiment.  

 

2. MATHEMATICAL DEFINITION  

In previous reports, we outline outstanding features concerned with the theory of 

2D atom-based TOMOCOMD-CARDD MDs. This method codifies the molecular 

structure by means of mathematical quadratic, linear and bilinear transformations.[37-

43, 48-52] In order to calculate these algebraic maps for a molecule, the atom-based 

molecular vector, x (vector representation) and kth “non-stochastic and stochastic 

graph–theoretic electronic-density matrices”, Mk and Sk correspondingly (matrix 

representations), are constructed. In connection, atom-based quadratic and linear indices 

were recently extended to structural codification and biological properties prediction of 
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biopolymers (proteins and nucleic acid) using aminoacid-adjacency relationships and 

chemical-information codification.[44-47] Therefore the structure of this section will be 

as follows: 1) a background in aminoacid-based macromolecular vector and non-

stochastic and stochastic graph–theoretic electronic-contact matrices will be described 

in the next subsections (2.1 and 2.2, respectively), and 2) an outline of the mathematical 

definition of bilinear maps and a definition of our procedures will be develop in 

subsections 2.3 and 2.4, correspondingly.   

2.1. Chemical Information and Aminoacid-based Macromolecular Vector 

In analogy to the molecular vector x  used to represent organic molecules[54] [37-

43, 48-52] we introduce here the macromolecular vector ( mx ). The components of this 

vector are numeric values, which represent a certain side-chain amino-acid property. 

These properties characterize each kind of amino-acid (R group) within a protein. Such 

properties can be z-values,[55] side-chain isotropic surface area (ISA) and atomic 

charges (ECI) of the amino-acid,[56] hydropathy index (Kyte-Doolittle scale; HPI)[57] 

as well as other hydrophobicity scales such as Hopp-Woods [58], and so on. For 

instance, the z1(AA) scale of the amino-acid AA takes the values z1(V) = -2.69 for valine, 

z1(A) = 0.07 for alanine, z1(M) = 2.49 for methionine and so on.[55, 56] Table 1 depicts 

several side-chain descriptors for the natural amino-acids.[55-57] 

Table 1 comes about here (see end of the document) 

Thus, a peptide (or protein) having 5, 10, 15,..., n amino-acids can be represented 

by means of vectors, with 5, 10, 15,..., n components, belonging to the spaces  ℜ 5, ℜ 10, 

ℜ 15,...,ℜ n, respectively. Where n is the dimension of the real sets (ℜ n).   

This approach allows us encoding peptides such as SKEERN through out the 

macromolecular [ ]22.388.208.308.384.296.1=mx , in the z1-scale (see Table 1 for 
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more details). This vector belongs to the product space ℜ 6. The use of other scales 

defines alternative macromolecular vectors. 

Now, if we are interested to codify the chemical information by means of two 

different macromolecular vectors, for instance, mx  = [xm1,…, xmn] and my  = [ym1,…, 

ymn]; then different combinations of macromolecular vectors ( mx ≠ my ) are possible 

when a weighting scheme is used. In the present report, we characterized each amino-

acid with the biochemical parameters shown in Table 1. From this weighting scheme, 

fifteen (or thirty if mx w- my z ≠ mx z- my w) combinations (pairs) of macromolecular 

vectors ( mx , my ; mx ≠ my ) can be computed, mx z1- my z2, mx z1- my z3, mx z1- my HPI, mx z1-

my ISA, mx z1- my ECI, mx z2- my z3, mx z2- my HPI, mx z2- my ISA, mx z2- my ECI, mx z3- my HPI, mx z3-

my ISA, mx z3- my ECI, mx HPI- my ECI , mx HPI- my ECI and mx ISA- my ECI. Here, we used the 

symbols mx w- my z, where the subscripts w and z mean two amino-acid properties from 

our weighting scheme and a hyphen (-) expresses the combination (pair) of two selected 

aminoacid-label biochemical properties.  

In order to illustrate this, let us consider the same peptide as in the example above 

SKEERN and the following weighting scheme: z1 and z2 ( mx z1- my z2 = mx  z2- my z1). 

The following macromolecular vectors mx = [1.96  2.84  3.08  3.08  2.88  3.22] and my = 

[-1.63  1.41  0.39  0.39  2.52  1.45] are obtained when we use z1 and z2 as chemical 

weights for codifying each amino-acid in the example peptide in mx and my vectors, 

respectively (see also Table 2).  

Table 2 comes about here (see end of the document)  

2.2. Background in non-Stochastic and Stochastic Graph–Theoretic Electronic-

Contact Matrices.  



 10

In molecular topology, molecular structure is expressed, generally, by the 

hydrogen-suppressed graph. That is, a molecule is represented by a graph. Informally a 

graph G is a collection of vertices (points) and edges (lines or bonds) connecting these 

vertices.[59-61] In more formal terms, a simple graph G is defined as an ordered pair 

[V(G), E(G)] which consists of a nonempty set of vertices V(G) and a set E(G) of 

unordered pairs of elements of V(G), called edges.[59-61] In this particular case we are 

not dealing with a simple graph but with a so-called pseudograph (G). Informally, a 

pseudograph is a graph with multiple edges or loops between the same vertices or the 

same vertex. Formally: a pseudograph is a set V of vertices along a set E of edges, and a 

function f from E to {{u,v}| u,v in V} (The function f shows which pair of vertices are 

connected by which edge). An edge is a loop if f(e) = {u} for some vertex u in V.[37, 

62, 63] 

In the other hand, Anfinsen’s experiments with small proteins demonstrated that 

protein amino-acid sequence encodes their peptidic backbone folding. However, 

nowadays, the merely knowledge about amino-acid sequence of a protein don’t provide 

us its three-dimensional structure. Primary structure of proteins consists in unbranched 

amino-acid sequences, linked by amide bonds between the α-carboxyl group of one 

residue and the α-amino group of the next. Three-dimensional distribution of all atoms 

in a protein is referred to as the protein’s tertiary structure. Whereas the term secondary 

structure refers to the spatial arrangement of amino-acid residues that are adjacent in the 

primary structure, tertiary structure includes longer-range aspects of amino-acid 

sequence. Last, individual polypeptidic chains into multi-subunit proteins are organized 

in three-dimensional complexes reaching quaternary-structural levels. As previously 

outlined, essential information for proteins folding are contained in amino-acid 

sequence, more specifically in amino-acid side-chains of polypeptidic chain. 
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Taken into account the above statement, in this paper we develop a graph-

theoretical model to represent the molecular structure of proteins. This is called 

macromolecular graph. Here, graph’s vertices are Cα-atoms into polypeptide backbone 

and edges are both covalent interactions between amino-acids (peptidic bonds) and non-

covalent interactions between amino-acid side-chains in same or different subunit. Non-

covalent interactions can happen too between an amino-acid side-chain and its main-

chain, then this amino-acid represent a pseudo-vertice into macromolecular 

pseudograph. These interactions can be considerer like contacts, which can be among 

amino-acid near of far in the polypeptide backbone, that is, the contact can be 

subdivided in to short-, medium- and large-contacts. Table 2 displays how to depict two 

interacting polypeptidic chains by means a macromolecular pseudograph because the 

hetero-dimer (SKEERN) contains an amino-acid having hydrogen bond between its 

side-chain and its main-chain atom. 

The nxn kth non-stochastic graph–theoretic electronic-contact matrix, k
mM , is a 

square and symmetric matrix, where n is the number of amino-acids in the protein.[44, 

47] The coefficients kmij are the elements of the kth power of  mM  and are defined as 

follows:  

mij  = 1 if i ≠ j and ∃ ek ∈ E(Gm)                                                                                                                               (1)                                            

       = 1 if i = j and the amino-acid i has a hydrogen-bond between its side-chain and its                      

main-chain atom. 

 = 0 otherwise 

where E(Gm) represents the set of edges of Gm.  

The matrix k
mM  provides the numbers of walks of length k that links every pair of 

vertices vi and vj. For this reason, each edge in 1
mM  represents a peptidic bond (covalent 
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bond) or a hydrogen-bond as well as salt bridge interaction (non-covalent bond) 

between amino-acids i and j.  

On the other hand, the kth stochastic graph–theoretic electronic-contact matrix of 

Gm, k
m

s M , can be directly obtained from k
mM . Here, k

m
s M  = [ksmij], is a square matrix of 

order n (n = number of Cα atoms) and the elements ksmij are defined as follows: 

i
k

ij
k

i
k

ij
k

ij
k m

SUM
m

sm
δ

==                                                                                                                                                  (2) 

where, kmij are the elements of the kth power of k
mM  and the SUM of the ith row of k

mM  

are named the k-order vertex degree of Cα atom i, i
kδ . It should be remarked that the 

matrix k
m

s M  in Eq. 2 has the property that the sum of the elements in each row is 1. An 

nxn matrix with nonnegative entries having this property is called a “stochastic 

matrix”.[64] Table 3 show the zero, first and second powers of the total non-stochastic 

and stochastic graph–theoretic electronic-contact matrices of macromolecular 

pseudograph depicted in Table 2. 

Table 3 comes about here (see end of the document) 

2.3. Mathematical Bilinear Forms: A Theoretical Framework 

In mathematics, a bilinear form in a real vector space is a mapping ℜ→VxVb : , 

which is linear in both arguments.[65-70] That is, this function satisfies the following 

axioms for any scalar α and any choice of vectors 121 ,,,, wvvwv  and 2w .  

i. ),(),(),( wvbwvbwvb ααα ==  

ii. ),(),(),( 2121 wvbwvbwvvb +=+       

iii. ),(),(),( 2121 wvbwvbwwvb +=+       

That is, b is bilinear if it is linear in each parameter, taken separately. 
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Let V  be a real vector space in nℜ ( nV ℜ∈ ) and consider that the following vector 

set, { }neee ,...,, 21  is a basis set of nℜ . This basis set permits us to write in unambiguous 

form any vectors x and y of V, where nnxxx ℜ∈),...,,( 21 and nnyyy ℜ∈),...,,( 21 are 

the coordinates of the vectors x and y , respectively. That is to say,  

∑
=

=
n

i
i

iexx
1

                                                                                                                      (3) 

and, 

∑
=

=
n

j
j

jeyy
1

                                                                                                                   (4) 

Subsequently, 

),(),(),( ji
ji

j
j

i
i eebyxeyexbyxb ==                                                                             (5)        

if we take the aij as the nxn scalars ),( ji eeb . That is,  

),( jiij eeba = , to i = 1,2,…,n and j = 1,2,…,n                                                                (6) 

Then, 

[ ] [ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=== ∑

n
nnn

jn
n

n

ji

Tji
ij

y

y

aa

aa
xxYAXyxayxb M

1

1

11
1

, ...
.........

...
...),(                               (7) 

As it can be seen, the defined equation for b may be written as the single matrix 

equation (see Eq. 7), where [Y] is a column vector (an nx1 matrix) of the coordinates of 

y  in a basis set of ℜ n, and [X]T (a 1xn matrix) is the transpose of [X], where [X] is a 

column vector (an nx1 matrix) of the coordinates of x in the same basis of ℜ n. 

Finally, we introduce the formal definition of symmetric bilinear form. Let V be a 

real vector space and b be a bilinear function in VxV. The bilinear function b is called 

symmetric if Vyxxybyxb ∈∀= ,),,(),( .[65-70] Then, 
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),(),(
,,

xybyxayxayxb
n

ji

ij
ji

n

ji

ji
ij === ∑∑                                      (8) 

2.4. Non-Stochastic and Stochastic Amino Acid-Based Bilinear Indices: Total 

(Global) Definition. 

The kth non-stochastic and stochastic bilinear indices for a protein, ),( mmkm yxb and 

),( mmkm
s yxb , are computed from these kth non-stochastic and stochastic graph–

theoretic electronic-contact matrix, k
mM  and k

m
s M  as shown in Eqs. 9 and 10, 

respectively:  

∑∑
==

=
n

j

j
m

i
mij

k
n

i
mmmk yxmyxb

11

),(                                                              (9)     

∑∑
==

=
n

j

j
m

i
mij

k
n

i
mmmk

s yxsmyxb
11

),(                                                         (10)     

where n is the number of amino-acids (Cα atom) in the protein, and xm
1,…,xm

n and 

ym
1,…,ym

n are the coordinates or components of the macromolecular vectors mx  and my  

in a canonical basis set of ℜ n. 

The defined equations (9) and (10) for ),( mmkm yxb and ),( mmkm
s yxb  may be also 

written as the single matrix equations: 

),( mmkm yxb  = [Xm]T Mm
k [Ym]                                                                                     (11) 

),( mmkm
s yxb  = [Xm]T sMm

k [Ym]                                                                                  (12) 

where [Ym] is a column vector (an nx1 matrix) of the coordinates of my in the canonical 

basis set of ℜ n, and [Xm]T is the transpose of [Xm], where [Xm] is a column vector (an 

nx1 matrix) of the coordinates of mx in the canonical basis of ℜ n. Therefore, if we use 

the canonical basis set, the coordinates [(xm
1,…,xm

n) and (ym
1,…,ym

n)] of any 

macromolecular vectors ( mx  and my ) coincide with the components of those vectors 
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[(xm1,…,xmn) and (ym1,…,ymn)]. For that reason, those coordinates can be considered as 

weights (R-group in Cα atom, that is to say “amino-acid labels”) of the vertices of Gm , 

due to the fact that components of the molecular vectors are values of some amino-acid 

property that characterizes each kind of R-chain in protein. The calculation of the three 

first values of bilinear indices for example protein (see Table 2 and 3) is shown in Table 

4.  

Table 4 comes about here (see end of the document) 

It should be remarked that non-stochastic and stochastic bilinear indices are 

symmetric and non-symmetric bilinear forms, respectively. Therefore, if in the 

following weighting scheme, W and Z are used as amino-acid weights to compute these 

protein’s bilinear indices, two different sets of stochastic bilinear indices, W-

Z ),( mmkm
s yxb  and Z-W ),( mmkm

s yxb [because mx W- my Z ≠ mx Z- my W] can be obtained 

and only one group of non-stochastic bilinear indices W-Z ),( mmkm yxb = Z-

W ),( mmkm yxb because in this case mx W- my Z = mx Z- my W can be calculated.  

2.5. Non-Stochastic and Stochastic Local Bilinear Indices: Amino-acid, Aminoacid-

type and Peptide Fragment Bilinear Indices Definition. 

In the last decade, Randić[71] proposed a list of desirable attributes for a molecular 

descriptor. Therefore, this list can be considered as a methodological guide for the 

development of new topological indices. One of the most important criteria is the 

possibility of defining the descriptors locally. This attribute refers to the fact that the 

index could be calculated for the molecule (protein) as a whole but also over certain 

fragments of the structure itself. 

Therefore, in addition to total bilinear indices computed for the whole protein, a 

local-fragment (peptide fragment) formalism can be developed. These descriptors are 
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termed local non-stochastic and stochastic bilinear indices, ),( mmLkm yxb and 

),( mmLkm
s yxb , respectively. The definition of these descriptors is as follows: 

∑∑
==

=
n

j

j
m

i
mLij

k
n

i
mmLmk yxmyxb

11
),(                                                        (13)     

∑∑
==

=
n

j

j
m

i
mLij

k
n

i
mmLmk

s yxsmyxb
11

),(                                                   (14)  

where kmijL [ksmijL] is the kth element of the row “i” and column “j” of the local matrix 

L
k
mM  [ L

k
m

s M ]. This matrix is extracted from the k
mM  [ k

m
s M ] matrix and contains 

information referred to the vertices of the specific protein fragments (Fr) and also of the 

molecular environment in k step. The matrix L
k
mM  [ L

k
m

s M ] with elements kmijL [ksmijL] is 

defined as follows (see Table 5):  

kmijL [ksmijL]  = kmij [ksmijL] if both vi and vj are vertices (amino-acid) contained within the     

Fr 

  = 1/2
 kmij  [ksmijL] if vi or vj are vertices contained within Fr but not both  

                  = 0 otherwise                                                                                               (15)                            

Table 5 comes about here (see end of the document) 

These local analogues can also be expressed in matrix form by the expressions: 

),( mmLkm yxb  = [Xm]T Mm
k

L
 [Ym]                                                                                   (16) 

),( mmkm
s yxb  = [Xm]T sMm

k
L

 [Ym]                                                                                  (17) 

It should be remarked that the scheme above follows the spirit of a Mulliken 

population analysis.[72] It should be also pointed out that for every partitioning of a 

protein into Z macromolecular fragments there will be Z local macromolecular fragment 

matrices. In this case, if a protein is partitioned into Z molecular fragments, the matrix 

k
mM  [ k

m
s M ] can be correspondingly partitioned into Z local matrices L

k
mM  [ L

k
m

s M ], L = 
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1,..., Z, and the kth power of matrix k
mM  [ k

m
s M ] is exactly the sum of the kth power of 

the local Z matrices. In this way, the total non-stochastic and stochastic bilinear indices 

are the sum of the non-stochastic and stochastic bilinear indices, respectively, of the Z 

macromolecular fragments: 

),(),(
1

mm

Z

L
mkLmmm yxbyxb ∑

=

=                                                                                       (18) 

),(),(
1

mm

Z

L
mkL

s
mmm

s yxbyxb ∑
=

=                                                                                    (19) 

In addition, the aminoacid-type bilinear indices can also be calculated. Aminoacid 

and aminoacid-type bilinear indices are specific cases of local protein bilinear indices. 

In this sense, the kth amino-acid bilinear indices are calculated by summing the kth 

amino-acid bilinear indices of all amino-acids of the same amino-acid type in the 

protein. In the aminoacid-type bilinear indices formalism, each amino-acid in the 

molecule is classified into an aminoacid-type (fragment), such as apolar, polar 

uncharged, polar charged, positive charged, negative charged, aromatic, and so on. For 

all data sets, including those with a common molecular scaffold as well as those with 

very diverse structure, the kth aminoacid-type bilinear indices provide important 

information. The calculation of the three first values of local (amino-acid) bilinear 

indices for example protein (see also Tables 2 and 3) is shown in Table 6. 

Table 6 comes about here (see end of the document) 

Any local protein’s bilinear index has a particular meaning, especially for the first 

values of k, where the information about the structure of the fragment FR is contained. 

Higher values of k relate to the environment information of the fragment FR considered 

within the macromolecular pseudograph. 

In any case, a complete series of indices performs a specific characterization of the 

chemical structure. The generalization of the matrices and descriptors to “superior 
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analogues” is necessary for the evaluation of situations where only one descriptor is 

unable to bring a good structural characterization.[16, 71] The local macromolecular 

indices can also be used together with total ones as variables for QSAR/QSPR 

modelling of properties or activities that depend more on a region or a fragment than on 

the macromolecule as a whole. 

 

3. MATERIAL AND METHODS 

3.1. Computational Strategies 

TOMOCOMD is an interactive program for molecular design and bioinformatics 

research.[73] The program is composed by four subprograms, each one of them dealing 

with drawing structures (drawing mode) and calculating 2D and 3D molecular and bio-

macromolecular descriptors (calculation mode). The modules are named CARDD 

(Computed-Aided ‘Rational’ Drug Design), CAMPS (Computed-Aided Modelling in 

Protein Science), CANAR (Computed-Aided Nucleic Acid Research) and CABPD 

(Computed-Aided Bio-Polymers Docking). In this paper we outline salient features 

concerned with only one of these subprograms: CAMPS. This subprogram was 

developed based on a user-friendly philosophy without prior knowledge of 

programming skills.  

The calculation of total and local macromolecular bilinear indices for any peptide 

or protein was implemented in the TOMOCOMD-CAMPS software.[73] The main 

steps for the application of this method in QSAR/QSPR can be briefly resumed as 

follows: 

1. Draw the macromolecular pseudographs for each protein of the data set, using 

the software’s drawing mode. This procedure is carried out by a selection of the 

active amino-acid symbol belonging to ‘natural’ amino-acid code. Here, we 
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consider covalent (peptidic bond) and non-covalent [hydrogen-bond and other 

electrostatic interaction (within a chain as well as between chains)] interaction. 

Afterward, we draw the mutants by changing an AA for alanine and considering 

that this change only affect the possibility of this region of the protein to form 

polar interaction (because we suppressed the hydrogen interaction if the former 

AA had it). 

2. Use appropriated amino-acid weights in order to differentiate the side-chain of 

each amino-acid. In this work, we used as amino-acid property some descriptors 

for the natural amino-acid: the three z-values,[55] Kyte-Doolittle’s 

hydrophobicity scale,[57] ISA and ECI.[56]  

3. Compute the non-stochastic and stochastic protein bilinear indices. They can be 

performed in the software calculation mode, in which one can select the side-

chain properties and the family descriptor previously to calculate the bio-

macromolecular indices. This software generates a table in which the rows and 

columns correspond to the compounds and the ),( mmkm yxb , respectively.  

4. Find a QSPR/QSAR equation by using statistical techniques, such as multilinear 

regression analysis (MRA), Neural Networks, Linear Discrimination Analysis 

(LDA), and so on. That is to say, we can find a quantitative relation between a 

property P and the ),( mmkm yxb having, for instance, the following appearance,  

P = a0 ),(0 mmm yxb  +a1 ),(1 mmm yxb +a2 ),(2 mmm yxb +…+ ak ),( mmkm yxb +c   (20) 

where P is the measurement of the property, ),( mmkm yxb [or ),( mmkLm yxb ] is 

the kth total [or local] macromolecular non-stochastic bilinear indices, an the ak’s 

are the coefficients obtained by the statistical analysis. 

5. Test the robustness and predictive power of the QSPR/QSAR equation by using 

internal and external cross-validation techniques. 
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6. Develop a structural interpretation of the obtained QSAR/QSPR model using 

macromolecular bilinear indices as molecular descriptors. 

3.2. Data Sets 

Arc is a homodimer in which each monomer intertwines with the other to form a 

single, globular domain with a well-defined core. Several side-chain hydrogen bond and 

salt-bridge interactions are involved in the Arc crystal structure. An exhaustive 

representation of these interactions can be observed in some detail elsewhere (see Fig 

1b in Reference 34). Nevertheless, an overview of these electrostatic interactions in Arc 

repressor structure will be given. Hydrogen-bond interactions take place:[34]  

i) Between side chain in the same subunit (N29-E36) and; those between side 

chains in different subunits (R40-S44). 

ii) Between a side chain and main-chain atom intersubunit (W14-N34, N34-R13) 

and; those between a side chain and main-chain atom intrasubunits (E17-E17, S32-S35, 

S44-R40).  

On the other hand, salt-bridge interactions take place:[34] 

iii)  Between side chain in the same subunit (R16-D20, D20-R23, R31-E36, E36-

R40, E43-K46, E43-K47) and; those between side chains in different subunits (E28-

R50, R40-E48). 

The data of Arc repressor mutant was taken from the literature.[34] In this paper, 

Alanine substitutions were constructed at each of the 51 non-alanine positions in the 

wild-type Arc sequence. To avoid intracellular proteolysis and purification difficulties, 

these authors constructed the alanine substitution mutant in backgrounds containing the 

carboxy-terminal extensions (His)6 (designated st6) or (His)6-Lys-Asn-Gln-His-Glu 

(designated st11).[74, 75] These tail sequences allow affinity purification, reduce 

degradation and cause no significant changes in protein stability.[33] 
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Milla et al.[34] subjected each purified mutant of Arc to thermal and urea 

denaturation experiments. Stability of the proteins was checked by melting temperature 

(tm). The values of tm for 53 Arc homodimers reported by these authors are given in 

Tables 7 and 8.  

Table 7 and 8 comes about here (see end of the document) 

In equilibrium and kinetic unfolding-refolding studies only native Arc dimers and 

denatured monomers are significantly populated. Thus, folding and dimerization are 

concerted processes.[31, 34, 35] For this reason, it is important to remember that tm 

refers to unfolding of the Arc homodimer. Then, one must take into consideration that 

each single mutation changes two side-chains in the Arc dimer, being stability effects 

roughly twice these observed for monomeric proteins. Moreover, changes in stability 

may arise due to mutation disrupts of a native interaction, when the native structure of 

the mutant undergoes relaxation, or because of the change on the properties of the 

denatured mutant protein.[34, 76-79] 

3.3. Chemometric Analysis: Classification- and Regression-Based QSAR Model. 

Linear Discrimination Analysis (LDA), Linear Multiple Regression (LMR) and the 

non-linear estimation analysis, Piecewise Linear Regression (PLR) were used to obtain 

mathematical models. These statistical analyses were carried out with the STATISTICA 

software package.[80] Forward stepwise was fixed as the strategy for variable selection 

in the case of LDA and LMR analysis. The tolerance parameter (proportion of variance 

that is unique to the respective variable) used was the default value for minimum 

acceptable tolerance, which is 0.01.  

LDA is used in order to generate the classifier function on the basis of the 

simplicity of the method.[81] To test the quality of the discriminant functions derived 

we used the Wilks’ λ and the Mahalanobis distance. The Wilks’ λ statistic for overall 
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discrimination can take values in the range of 0 (perfect discrimination) to 1 (no 

discrimination). The Mahalanobis distance indicates the separation of the respective 

groups.  It shows whether the model possesses an appropriate discriminatory power for 

differentiating between the two respective groups. The classification of cases was 

performed by means of the posterior classification probability, which is the probability 

that the respective case belongs to a particular group, i. e., mutants with near wild-type 

stability (H) or mutants with reduced stability (P). In developing this classification 

function the values of 1 and -1 were assigned to H and P mutants (see Table 9). The 

quality of the ADL-model was also determined by examining the percentage of good 

classification and the proportion between the cases and variables in the equation.  

A simple linear and other more complex nonlinear model was obtaining using 

LMR and PLR as statistic techniques, respectively. The quality of the models was 

determined examining the statistic parameters of multivariable comparison of regression 

and cross-validation procedures. In this sense, the quality of models was determined by 

examining the regression coefficients (R), determination coefficients (R2), Fisher-ratio’s 

p-level [p(F)], standard deviations of the regression (s) and the leave-one-out (LOO) 

press statistics (q2, scv).[82] In recent years, the LOO press statistics (e.g., q2) have been 

used as a means of indicating predictive ability. Many authors consider high q2 values 

(for instance, q2 > 0.5) as indicator or even as the ultimate proof of the high-predictive 

power of a QSAR model. In a recent paper, Golbraikh and Tropsha demonstrated that a 

high value of LOO q2 appears to be a necessary but not the sufficient condition for the 

model to have a high predictive power.[83]  

In addition, to assess the robustness and predictive power of the found models, 

external prediction (test) sets were also used. This type of model validation is very 

important, if we take into consideration that the predictive ability of a QSAR model can 
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only be estimated using an external test set of compounds that was not used for building 

the model.[82, 83] 

 

4. RESULTS AND DISCUSSION 

4.1. Development of the Discriminant Function for Arc A-Mutants Classification. 

The development of a discriminant function that permits the classification of 

mutants as near wild-type stability or reduced stability is a key of the present approach 

to describe the protein stability effects of a complete set of alanine substitutions in Arc 

repressor.  

Here we considered a general data set of 53 A-mutants, 28 of them having near 

wild-type stability (1-28) and the rest being mutants with reduced stability (29-53). This 

data set was randomly divided into two subsets, one containing 41 mutants (21 having 

near wild-type stability and 20 of reduced stability) was used as a training set, and the 

other containing 12 mutants (7 having near wild-type stability and 5 of reduced 

stability) was used as a test set.  

The principle of parsimony (Occam’s razor) was taken into account as strategy for 

model selection. It were obtained non-stochastic and stochastic classification models 

(equations 21 and 22, respectively), each one was developed from protein structural 

depicting by means non-stochastic and stochastic bilinear indices. These are given 

below together with the statistical parameters of LDA: 

Class = - 45.33 -5.00x10-3 Z1-ISAb0( mm yx , ) -1.00x10-3 Z2-Z3b6( mm yx , ) 

             +2.00 x10-3 Z2-HPIb5( mm yx , ) -0.44ECI-HPIb2( mm yx , )                                    (21)                                

N = 41    λ = 0.24   D2 = 11.88    F = 28.08    p(F) < 0.0001 

Class = 24.80 -5.00x10-3 Z1-ISA  sb2( mm yx , ) – 53.07 ECI-HPI  sb0( mm yx , ) 

              -0.47 Z2-ECI sb1( mm yx , ) – 0.15 Z2-HPI sb6( mm yx , )                                          (22)                               
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N = 41    λ = 0.29  D2 = 9.14    F = 21.61    p(F) < 0.0001 

where λ is the Wilks’s statistic, D2 is the squared Mahalanobis distance and F is the 

Fisher ratio. The Mahalanobis distance indicates the separation of the respective groups.  

It shows whether the model possesses an appropriate discriminatory power for 

differentiating between the two respective groups. 

These statistics indicate that models (Eqs. 21 and 22) are appropriate for the 

discrimination of near wild-type stability/reduced stability mutants studied here. The 

non-stochastic-based QSAR obtained model has a positive predictive value of 100% 

(21/21) of near wild-type stability mutants and a negative predictive value of 100% 

(20/20) of reduced stability mutants in the training set, for an accuracy (global good 

classification) of 100% (41/41), while stochastic obtained model has a positive 

predictive value of 100% (21/21) of near wild-type stability mutants and a negative 

predictive value of 95.00% (19/20) of reduced stability mutants in the training set, for 

an accuracy (global good classification) of 97.56% (40/41). 

 Non-stochastic and stochastic models showed a high Matthew’s correlation 

coefficients (MCC) of 1.00 and 0.95, respectively; MCC quantified the strength of the 

linear relation between the macromolecular descriptors and the classifications.[84] In 

Tables 9 and 10 we give the classification of mutants in the training set together with 

their posterior probabilities calculated from the Mahalanobis distance.  

Table 9 and 10 comes about here (see end of the document) 

The most important criterion to accept or not a discriminant models, such as 

models (Eqs 21 and 22), is based on the statistics for the test set. Both models classify 

correctly 11 of 12 mutants, for an accuracy of 91.67%, with a MCC of 0.837. In Tables 

9 and 10, we give the classification of mutants in the validation group. If we considered 

the data set and the test set (full set) the accuracy was 98.11% (52/53) and 96.23% 
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(51/53) for equation 21 and 22, respectively, by using non-stochastic and stochastic 

bilinear indices in that order. 

4.2. Development of the Regression Models for Melting Point Description. 

The second step in modeling the stability effects of a complete set of A-

substitution mutants was to find a way to predict the melting temperature (tm) of such A-

mutants of Arc repressor. With this aim, we compiled a data set of 48 proteins. Five A-

mutants (49-53: VA22-st11, EA36-st11, IA37-st11, VA41-st11 and FA45-st11) were 

extracted due to their non-accurate tm values (< 20 oC), which is not useful for MLR 

analysis. 

By using the total non-stochastic and stochastic protein’s bilinear indices and MLR 

analysis we developed the following QSSR [quantitative structure-stability relationship] 

lineal models to describe tm for these A-mutants of the Arc repressor: 

 

tm (oC) = 51.07 (±0.58) -8.58 (±1.43) Z1-ISAb0( mm yx , )-4.68 (±0.75) Z2- Z3b4( mm yx , )  

               + 4.63 (±1.02) ISA- ECIb0( mm yx , ) -6.28 (±1.21) Z1- Z2b1( mm yx , )   

               -11.15 (±2.29) Z1- HPIb1( mm yx , ) – 7.77 (±2.80) Z1- ECIb1( mm yx , )                 (23)                             

N = 46 R = 0.91 R2 = 0.83 s = 3.9293 q2 = 0.73 scv = 4.50 F(6,39) = 33.08  p<0.0001 

 

tm (oC) = 51.02(±0.63) -5.29 (±1.25)Z1-ISA sb4( mm yx , ) -3.98(±0.75) Z2- Z3 sb4 ( mm yx , )  

               +9.08(±1.73) Z2- HPI sb1( mm yx , ) -9.57(±2.02) Z2- HPI sb3( mm yx , )  

                -2.17(±0.68) ECI- HPI sb1( mm yx , ) -4.02(±1.44) Z1-ISA sb1( mm yx , )                (24)                               

N = 46 R = 0.90 R2 = 0.81 s = 4.1941 q2 =0.645 scv = 5.01 F(6,39) = 28.24  p<0.0001 

 



 26

where N is the size of the data set, R is the regression coefficient, s is the standard 

deviation of the regression, F is the Fischer ratio and q2, scv are the squared correlation 

coefficient and the standard deviation of the cross-validation performed by the LOO 

procedure, respectively. Tables 7 and 8 give the observed and calculated tm values from 

models developed by using non-stochastic and stochastic bilinear indices (Eqs. 23 and 

24, respectively) for the training set. Figures 1 and 2 are illustrated the linear 

relationships between observed and calculated tm values by Eqs. 23 and 24, respectively. 

Equations 23 and 24 explain 83% and 81% of the variance of the experimental tm, 

respectively. The predictive abilities of models are evidenced by the values of the LOO-

press statistics (q2 > 0.5 and scv).[82, 83] In developing these models only two mutants 

(1PA8-st6 and 45SA32-st11) were detected as statistical outliers.[85, 86] Outliers 

detection was carried out using the following standard statistical test: residual, 

standardized residual, studentized residual and Cook’s distance.[86] Mutant (PA8) is 

only significantly more stable than wild type. The tm of this mutant protein is about 15oC 

higher than that of the wild-type parent (see Table 7), and the free energy of unfolding 

is increased by 2.9 kcal mol-1 compared with wild type.[34] In addition, different 

protein folding may be the reason for the lack of linear regression between protein’s 

bilinear indices and stability (tm) for these mutants; leading to a nonlinear dependence 

between tm and protein’s bilinear indices. In this case, other terms should be taken into 

consideration such as cooperative salt-bridges and hydrogen-bond formation, 

hydrophobic forces, steric terms, and so on. In this sense, far from strong quantitative 

correlations between stability and structural factors have been obtained in a previous 

study.[34] For example, when the set of  tm values were tested for linear correlations 

with fractional side-chain solvent accessibility, with changes in buried surface area, 

with average side-chain B-factors, and with the number of side-chain atoms or total 



 27

atoms within 6 Å of the atoms deleted by the alanine substitution, the pairwise 

correlation coefficient (r2) ranges from 0.21 to 0.38.[34] Thus, even though most 

substitutions of alanine for hydrophobic-core residues are destabilizing, there is no 

simple relationship between the size of the replaced core residue and the destabilizing 

effect.[34] 

Therefore, the use of other nonlinear models was required; a nonlinear model that 

retains linearity in the equation, but uses nonlinear methods to fit them. This is the 

piece-wise method,[80] which produces two linear equations by clustering observations 

into two groups according to their absolute magnitude. The best fitted non-stochastic 

(equations 25 and 26) and stochastic (equations 27 and 28) piecewise models were: 

tm (oC)<BKPT = 47.99 -4.99Z1-Z2b1( mm yx , ) -9.07Z1-HPIb1( mm yx , )-6.88Z1-ECIb1( mm yx , ) 

                       -6.54Z1-ISAb0( mm yx , ) -4.25Z2-Z3b4( mm yx , ) +4.73ISA-ECIb0( mm yx , )      (25)                             

tm (oC)>BKPT = 57.58 -0.78Z1-Z2b1( mm yx , ) -1.47Z1-HPIb1( mm yx , ) -0.72Z1-ECIb1( mm yx , )  

                      – 1.50Z1-ISAb0( mm yx , ) -1.29 Z2-Z3b4( mm yx , ) + 0.93ISA-ECIb0( mm yx , )    (26)                            

N = 46   R = 0.95   R2 = 0.91   Bkpt = 51.86   p <0.0001 

 

tm (oC)<BKPT = 47.49 -4.93Z1-Z2 sb1( mm yx , ) -3.42Z1-HPI sb1( mm yx , )  

                       -2.40Z1-ECIsb1( mm yx , ) +8,17Z1-ISA sb0( mm yx , ) -10,07Z2-Z3 sb4( mm yx , ) 

                       -1,232ISA- ECI sb0( mm yx , )                                                                      (27) 

tm (oC)>BKPT = 58.28 -1.13Z1-Z2 sb1( mm yx , ) +0.31Z1-HPI sb1( mm yx , )  

                       -0.84Z1-ECI sb1( mm yx , ) -0.64Z1-ISA sb0( mm yx , ) +0.32Z2-Z3 sb4( mm yx , ) 

                        -0.17ISA-ECI sb0( mm yx , )                                                                       (28)           

N = 46   R = 0.96   R2 = 0.92   Bkpt = 51.86   p <0.0001 
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where R (piecewise regression coefficient), for gradual variance explanation, takes 

values ranging from 0 (non-piecewise regression) to 1 (explanation of 100% of 

variance). The probability of error after acceptance of the piece-wise hypothesis, p was 

checked for an absolute value > 0.05. The parameter break-point (Bkpt) is the tm value, 

which mark the frontier between the two groups. The resultant regression coefficient 

suggested a highly significant piecewise linear correlation between observed and 

predicted values (p < 0.05). In Tables 11 and 12, we depict the observed, non-stochastic 

and stochastic calculated and residual values of tm for the data set. 

Table 11 and 12 comes about here (see end of the document) 

The main difficulty of the linear piecewise regression is its limitation to predict 

new mutants whose stability profiles are unknown. The problem here is: which equation 

should be applied to a new mutant not considered in this study? The Bkpt value (51.86), 

perfectly agrees with an experimental scale previously proposed.[34] The same scale 

was used for grouping mutants into the two studied groups in our LDA approach. For 

this reason, we can use the LDA and piecewise models in combination to classify and to 

predict the stability of the mutant's Arc homodimers. 

4.3. Structural Interpretation and Implication of Understanding Arc Folding 

At present it is known that the folding of Arc repressor is influenced by different 

kinds of interactions.[34, 35] An overwhelming role is played by the van der waals 

forces. The hydrophobic interaction is another factor influencing the stability due to the 

hydrophobic nature of the Arc wild-type core. Another factor is related to electrostatic 

force, mainly due to intra and intersubunit salt bridges and hydrogen bonds.[34, 35] 

However, most of these factors are interrelated to each other, and it is difficult to 

determine the contribution of each one by separate. For instance, hydrophobic 

interaction is intimately related to van der Waals forces, and the electrostatic 
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interactions are also related to dispersion interactions, which are part of the van der 

Waals forces. In addition, Arc wild-type and its mutants showed a cooperative 

behaviour in folding/dimerization processes. 

As can be observed in the obtained models, the included variables are related with 

the factors that influence on the stability and this one with the structural features of Arc 

dimer. In this sense, the protein’s bilinear indices calculated using z1-HPI, z1-ISA, z2- 

z3, z2-HPI, z2-ECI couple values, as amino-acid (side-chain) properties-pairs are 

included in most of the developed models (see equations 21-28). This pattern also 

displays when classification models are built using only one pair amino-acid (side-

chain) properties and it is compared its global good classification (see Figure 3). These 

results draw individual significance of each one side-chain properties combination to 

explain variance of stability of A-mutants set.  

Figure 3 comes about here (see end of the document) 

These values are related to hydrophilicity (ISA, z1), bulk-steric (z2), and electronic 

(HPI, ECI and z3) amino-acid side-chain properties (see Figure 3 and molecular 

descriptors include in equations 21-28). For this reason, it is possible to determine the 

nature of the driving forces of the Arc repressor folding, e.g., hydrophobic, steric, or 

electronic. However, the preponderance of hydrophobic and electronic effects in the 

obtained equations (21-28) over other types of protein’s bilinear indices clearly 

indicates the importance of the hydrophobic and electronic side-chain factor in the 

folding of Arc dimer. In fact, when we develop the final models (in this case Eqs. 21 

and 22 with Q(%) of 100 and 97.56, respectively) by using at the same time whole set 

of bio-macromolecular descriptors (calculated with all weighting schedule), the result 

are better than when we used only one amino-acid side-chain property (best results 

archived with z1-HPI and z1-ISA based bilinear indices, which showed only 88% of 



 30

accuracy) to weighting every amino-acid in the Arc dimmer. This results evidence that 

Arc folding is a rather complicate process that depends to diverse process and the 

combinations of parameters (bilinear indices calculated with every pairs of amino-acid 

properties) are necessary to describe adequately the tm of these mutants’ proteins (Eqs. 

21 and 22).  

On the other hand, we plots Q(%) with specific orders of bilinear indices (Figure 4) 

in order to study the impact of vicinity in folding. The results show that orders in the 

range 0-13 are sufficient to explain the variance in tm and indices of high orders (k>13) 

are colineal. In the range 0-13, k = 1, 2 and 4 (Q = 95%) are the best of all orders as well 

as 6, 3 and 5 are the second best orders (Q = 93%, 88% and 88%, respectively). These 

results are very similar with the orders of bilinear indices that are in the equations 21 

and 22. In general form. It must be pointed out that developed equations (21-28) involve 

short-reaching (k ≤ 3) and middle-reaching (3 < k ≤ 7) protein’s bilinear indices. Far-

reaching (k = 8 or greater) bilinear indices were not considered like important to 

describe tm, in complete agreement with the results obtained in the Figure 4. this is a 

logical results, because it has been well established that the inter-residue interaction 

(short, medium and long-range) play an important role in folding and stability of 

globular proteins.[11, 12] In fact, residues in ±1-6 vicinity (in the same- or in different-

chain (amino-acid backbone) in Arc repressor dimmer) are the most relevant to describe 

the mutations of Arc native. This situation means that the change the amino-acid in the 

residue backbone do a more marked structural effects (inter-residue contacts) in the ±1-

6-vicinity of the amino-acids. This situation means that the stability profile of wild-type 

Arc and its A-mutants results in topologic/topographic-controlled protein’s backbone 

interactions. 

Figure 4 comes about here (see end of the document) 
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4.4 Comparison with Other Computational Approaches.  

Recently, some in silico techniques have been used to develop classification 

models that permits us compute biological stability for each A-mutant of Arc 

repressor.[29, 30, 44, 47, 87]   

The relative comparison will be based on the kind of method use for deriving the 

QSAR and their statistical parameter, the explored molecular descriptors, the overall 

accuracy (%), Matthew’s correlation coefficient and the validation method used. Table 

13 describes the comparison between non-stochastic and stochastic macromolecular 

bilinear indices methods and others reported approaches for the stability prediction of 

A-mutants of Arc repressor.[29, 30, 44, 47, 87]    

Table 13 comes about here (see end of document) 

As can be seen, the accuracy in the training set (100% and 97.56%) of non-

stochastic and stochastic bilinear indices based models were higher than of other 

reported LDA equations (for more details see Table 13). In addition, the Wilks’ λ 

statistic for ours models was better than those reported in the others models.[29, 30, 44, 

47, 87]     

Validation of the models is the other major bottleneck in QSAR.[82, 83] One of 

the most popular validation criteria is internal cross-validation (leave-one-out, leave-n-

out, leave-25%-out and so on). Nevertheless, there can exist a lack of correlation 

between the good results in internal cross-validation and the high predictive ability of 

QSAR models.[82, 83] Thus, the good high behavior in internal cross-validation appears 

to be the necessary but not the sufficient condition for the models to have a high 

predictive power. In this sense, Golbraikh and Tropsha emphasize that the predictive 

ability of a QSAR model can only be estimated using an external test set (external 

validation) of compounds that was not used for building the model and formulated a set 
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of criteria for evaluation of predictive ability of QSAR model.[82] In this case ours 

models show an accuracy of 91.67% for the test set. It is reasonable to expect some 

decrease in overall predictability of predicting sets with respect to training series for a 

simple reason; the model is developed to fit the points in training series, and therefore 

data points in predicting series are never used to develop it.  

On the other hand, explained variance and LOO press statistics of non-stochastic 

bilinear indices linear model was higher than other TOMOCOMD-CARDD LMR 

equations reported by our group (see Table 14).[44, 47] 

Table 14 comes about here (see end of document) 

 
5. CONCLUDING REMARK 
 

In this study a new set of bio-macromolecular descriptors relevant to protein 

QSAR/QSPR studies is present. These amino-acid based biochemical descriptors are 

based on the computation of bilinear maps on ℜ n [ ),( mmkm yxb : ℜ
n xℜ n →ℜ ] in 

canonical basis. Protein’s bilinear indices are calculated from kth power of non-

stochastic and stochastic graph–theoretic electronic-contact matrices, k
mM  and k

m
s M , 

respectively. Biochemical information is codified by using different pair combinations 

of amino-acid properties as weightings (z-values, side-chain isotropic surface area 

(ISA), amino-acids atomic charges (ECI) and hydrophathy index (Kyte-Doolittle scale; 

HPI). Their derivation is straightforward, and it is easy to interpret the QSARs/QSPRs 

that include them. We have shown here that the use of the protein’s total bilinear indices 

is able to account for thermodynamic parameters for wild-type and mutant Arc proteins. 

The resulting quantitative models are significant from a statistical point of view. A LOO 

cross-validation procedure revealed that the QSA(S)R models had a good predictability. 

Protein’s bilinear indices models compared favorably with several bio-macromolecular 

descriptors.  
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The models found to describe the stability profile of wild type Arc and its A-

mutants include protein’s bilinear indices accounting for hydrophobic (ISA, z1), bulk-

steric (z2), and electronic (HPI, ECI and z3) features of the studied molecules. These 

models using such combination of molecular descriptors are better than any other model 

that can be found by using only one type of the studied descriptors. We interpret these 

results as suggesting that many of the Arc mutations affect stability in more than one 

way and: by disrupting specific electronic interaction, by changing hydrophobic burial, 

and/or by changing the structure of the native or the denatured protein. Thus, we have 

proved that the combined use of z1-HPI, z1-ISA, z2- z3, z2-HPI, z2-ECI-protein’s bilinear 

indices is an appropriated approach to QSSR studies. These models are not only good 

enough to predict thermodynamic parameter of the folding of mutants of Arc dimer 

repressor, but also permit the interpretation of the driving forces of such folding 

processes. The approach described here represents a novel and very promising way to 

bioinformatics research. We would expect computational protein science to have a 

similar effect on the search for new vaccines, receptors, drugs, and so on as molecular 

modelling and QSAR have had on search for new drugs. 
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ANNEXES 

 
(Tables, figures and schemes should be inserted into main text) 

Table 1. Descriptors for the natural amino-acids. 
z-scale[55, 56] 

Amino-acids z1 z2 z3 
Hydrophobicity 

Scale (HPI) 
   (Kyte-

Doolittle)[57] 

 
ISA[56] 

 
ECI[56] 

Ala A 0.07 -1.73 0.09 1.8 62.90 0.05 
Val V -2.69 -2.53 -1.29 4.2 120.91 0.07 
Leu L -4.19 -1.03 -0.98 3.8 154.35 0.01 
Ile I -4.44 -1.68 -1.03 4.5 149.77 0.09 
Pro P -1.22 0.88 2.23 -1.6 122.35 0.16 
Phe F -4.92 1.30 0.45 2.8 189.42 0.14 
Trp W -4.75 3.65 0.85 -0.9 179.16 1.08 
Met M -2.49 -0.27 -0.41 1.9 132.22 0.34 
Lys K 2.84 1.41 -3.14 -3.9 102.78 0.53 
Arg R 2.88 2.52 -3.44 -4.5 52.98 1.69 
His H 2.41 1.74 1.11 -3.2 87.38 0.56 
Gly G 2.23 -5.36 0.30 -0.4 19.93 0.02 
Ser S 1.96 -1.63 0.57 -0.8 19.75 0.56 
Thr T 0.92 -2.09 -1.40 -0.7 59.44 0.65 
Cys C 0.71 -0.97 4.13 2.5 78.51 0.15 
Tyr Y -1.39 2.32 0.01 -1.3 132.16 0.72 
Asn N 3.22 1.45 0.84 -3.5 17.87 1.31 
Gln Q 2.18 0.53 -1.14 -3.5 19.53 1.36 
Asp D 3.64 1.13 2.36 -3.5 18.46 1.25 
Glu E 3.08 0.39 -0.07 -3.5 30.19 1.31 
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Table 2. Representation of two interacting polypeptide chains and its associated 
pseudograph and macromolecular vector.   

 

46
...Ser Lys Glu...

...GluArgAsn...

1 2 3

456

NH2

NH2

COOH

COOH

chain

chain

 
2

3

4

5

6

1
Cα

Cα

Cα

Cα

Cα

Cα

NH2

COOH

COOH

NH2

 
 
Macromolecular ‘Pseudograph’ (Gm) of the α-
Carbon Atoms (Polypeptide’s 
backbone) 

Here we consider both covalent interaction 
(peptidic bond between amino-acid shown with solid 
line) and non-covalent interaction (salt bridge and 
hydrogen-bond shown with dashed line) between 
amino-acid side chains (R-groups) in a same 
polypeptidic chain or different. Loop in third 
position (Glu3) means hydrogen-bond between 
amino-acid main chain and its side-chain. 

Macromolecular vector:  
[ ] 6RNREEKSxm ∈=  

In the definition of the mx , as macromolecular vector, 
the one letter symbol of the amino-acids indicates the 
corresponding side-chain amino-acid property, e.g., z1-
values. That is to say, if we write S it means z1(S), z1-
values or some amino-acid property, which 
characterizes each side chain in the polypeptide. 
Therefore, if we use the canonical bases of R6, the 
coordinates of any vector mx  coincide with the 
components of that macromolecular vector. 
 [ ] [ ]NREEKSX T

m =  

[ ]TmX = transposed of [ ]mX  and it means the vector 

of the coordinates of mx  in the canonical basis of R6  

(an 1x6 matrix) 
[ ]mX : vector of coordinates of mx  in the canonical 
basis of R6 (a 6x1matrix). 
 

mx , my components are z1 and z2-values 

respectively. 
 

mx =[1.96  2.84  3.08  3.08  2.88  3.22] 

 my =[-1.63  1.41  0.39  0.39  2.52  1.45] 
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Table 3. The zero (k = 0), first (k = 1) and second (k = 2) powers of the total non-
stochastic and stochastic graph–theoretic electronic-contact matrices of Gm, 
respectively.  

Order (k) Non-Stochastic Stochastic 
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Table 4. Values of non-stochastic and stochastic total bilinear indices for two 
interacting peptides (S K E E R N) used as example above (see also Table 2 and 3). 

Non-Stochastic Total Bilinear Indices 
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Table 5. The zero (k = 0), first (k = 1) and second (k = 2) powers of the local non-
stochastic and stochastic graph–theoretic electronic-contact matrices of Gm, 
respectively. 

The zero, first and second powers of the local (amino-acid) non-stochastic matrices 
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Table 5. Cont. 
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Table 6. Values of amino acid-based (local)bilinear indices for hetero-dimer SKEERN. 
Local Non-Stochastic Bilinear Indices 

Amino-acid (AA) b0L ( mx , my ) b1L ( mx , my ) b2L ( mx , my ) 
Ser (S) -3.1948 -0.8104 -13.0522 
Lys (K) 4.0044 6.1215 28.6812 
Glu (E) 1.2012 3.9264 5.8605 
Glu (E) 1.2012 7.3033 10.3029 
Arg (R) 7.2576 10.71 43.578 
Asn (N) 4.669 13.3352 23.4674 

Hetero-Dimer (SKEERN) 15.1386 40.586 98.8378 
Local Stochastic Bilinear Indices 

Amino Acid (AA) sb0L ( mx , my ) sb1L ( mx , my ) sb2L ( mx , my ) 
Ser (S) -3.1948 0.37176667 -2.04034833 
Lys (K) 4.0044 2.6327 4.27309429 
Glu (E) 1.2012 1.8709 1.08062179 
Glu (E) 1.2012 3.4534 1.66443036 
Arg (R) 7.2576 4.6284 6.24537857 
Asn (N) 4.669 4.81723333 3.34964405 

Hetero-Dimer (SKEERN) 15.1386 17.7744 14.5728207 
 
 
 
 
Table 7. Experimental and calculated values of melting temperature (tm) obtained by 
equation 23.  
Mutant Obs.a Cal.b Res.c ResCV

d Mutant Obs.a Cal.b Res.c ResCV
d 

1PA8-st6 74.1 outlier 25EA43-st6 56.1 51.7 4.4 4.9 
2SA35-st6 63.4 59.1 4.3 5.0 26EA28-st11 55.7 56.3 -0.6 -0.7 
3NA34-st11 63.0 55.6 7.4 8.5 27MA7-st6 55.5 53.8 1.7 1.9 
4NA11-st6 62.1 59.4 2.7 3.4 28DA20-st6 55.3 60.0 -4.7 -6.0 
5QA39-st11 61.4 56.3 5.1 5.5 29IA51-st11 50.9 50.7 0.2 0.3 
6GA52-st11 60.9 63.3 -2.4 -3.2 30GA49-st11 48.7 51.3 -2.6 -3.7 
7KA6-st6 59.6 62.4 -2.8 -3.2 31LA19-st6 48.3 46.2 2.1 2.4 
8RA16-st6 59.5 57.2 2.3 2.7 32GA30-st11 47.9 45.7 2.2 2.6 
9VA25-st6 59.3 56.1 3.2 3.4 33RA50-st11 47.9 46.6 1.3 1.5 
10MA4-st6 59.2 60.1 -0.9 -1.1 34KA47-st11 47.2 47.1 0.1 0.1 
11Arc-st6 59.0 60.2 -1.2 -1.3 35PA15-st11 46.6 47.9 -1.3 -1.5 
12EA27-st6 58.8 58.7 0.1 0.1 36SA44-st11 46.3 43.2 3.1 3.9 
13KA2-st6 58.7 58.3 0.4 0.5 37NA29-st11 45.3 45.7 -0.4 -0.4 
14QA9-st6 58.4 60.2 -1.8 -2.0 38VA33-st11 44.1 48.8 -4.7 -5.0 
15GA3-st6 58.1 61.0 -2.9 -3.1 39EA48-st11 43.2 46.3 -3.1 -3.4 
16MA1-st6 58.0 54.8 3.2 3.5 40LA12-st11 42.3 40.6 1.7 1.9 
17Arc-st11 57.9 53.5 4.4 4.8 41FA10-st6 40.6 47.3 -6.7 -8.3 
18SA5-st6 57.5 60.7 -3.2 -3.4 42LA21-st11 39.6 39.2 0.4 0.5 
19RA13-st6 57.3 56.9 0.4 0.5 43RA31-st11 37.1 41.6 -4.5 -5.0 
20KA46-st11 57.1 54.5 2.6 2.9 44MA42-st11 35.6 42.3 -6.7 -7.5 
21EA17-st6 57.0 62.8 -5.8 -6.5 45SA32-st11 33.5 outlier 
22VA18-st6 56.9 52.2 4.7 5.2 46YA38-st11 33.0 39.1 -6.1 -7.2 
23RA23-st11 56.7 49.5 7.2 7.6 47WA14-st11 31.5 27.3 4.2 7.8 
24KA24-st11 56.3 59.8 -3.5 -3.9 48RA40-st11 31.2 34.7 -3.5 -6.8 
aExperimental melting temperature tm 

0C.[34] Proteins are arranged in order of decreasing tm, Mutants 49–
53 (VA22-st11, EA36-st11, IA37-st11,VA41-st11 and FA45-st11) were extracted in the QSAR study due 
to its nonaccurate tm values (<20 0C), which is not useful for MLR analysis. The st6 and st11 refer to C-
terminal sequences of the mutant proteins.[34] 
bCalculated tm values by the Eq. 23. 
cResidual: tm (Obs.) - tm (Cal.). 
dResidual by LOO cross-validation procedures (deleted residual). 
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Table 8. Experimental and calculated values of melting temperature (tm) obtained by 
equation 24.   
Mutant Obs.a Cal.b Res.c ResCV

d Mutant Obs.a Cal.b Res.c ResCV
d 

1PA8-st6 74.1 outlier 25EA43-st6 56.1 56.1 0.0 0.0 
2SA35-st6 63.4 59.0 4.4 4.8 26EA28-st11 55.7 53.0 2.7 3.8 
3NA34-st11 63.0 55.9 7.1 9.0 27MA7-st6 55.5 56.3 -0.8 -0.9 
4NA11-st6 62.1 57.0 5.1 7.0 28DA20-st6 55.3 62.9 -7.6 -10.3 
5QA39-st11 61.4 52.9 8.5 9.1 29IA51-st11 50.9 49.7 1.2 1.3 
6GA52-st11 60.9 60.7 0.2 0.3 30GA49-st11 48.7 55.5 -6.8 -9.9 
7KA6-st6 59.6 59.8 -0.2 -0.2 31LA19-st6 48.3 47.6 0.7 0.8 
8RA16-st6 59.5 61.1 -1.6 -1.9 32GA30-st11 47.9 43.9 4.0 4.7 
9VA25-st6 59.3 56.9 2.4 2.7 33RA50-st11 47.9 53.6 -5.7 -7.7 
10MA4-st6 59.2 52.4 6.8 7.5 34KA47-st11 47.2 51.9 -4.7 -5.0 
11Arc-st6 59.0 59.6 -0.6 -0.6 35PA15-st11 46.6 50.0 -3.4 -4.1 
12EA27-st6 58.8 60.8 -2.0 -2.3 36SA44-st11 46.3 47.0 -0.7 -0.7 
13KA2-st6 58.7 56.3 2.4 3.0 37NA29-st11 45.3 42.6 2.7 3.0 
14QA9-st6 58.4 61.9 -3.5 -3.9 38VA33-st11 44.1 47.9 -3.8 -4.1 
15GA3-st6 58.1 60.0 -1.9 -2.0 39EA48-st11 43.2 47.8 -4.6 -5.3 
16MA1-st6 58.0 59.1 -1.1 -1.2 40LA12-st11 42.3 37.4 4.9 6.5 
17Arc-st11 57.9 52.7 5.2 6.0 41FA10-st6 40.6 43.6 -3.0 -6.2 
18SA5-st6 57.5 56.8 0.7 0.7 42LA21-st11 39.6 39.8 -0.2 -0.3 
19RA13-st6 57.3 60.9 -3.6 -4.4 43RA31-st11 37.1 37.4 -0.3 -0.5 
20KA46-st11 57.1 53.8 3.3 3.5 44MA42-st11 35.6 40.8 -5.2 -5.7 
21EA17-st6 57.0 58.4 -1.4 -1.6 45SA32-st11 33.5 outlier 
22VA18-st6 56.9 53.9 3.0 3.2 46YA38-st11 33.0 33.1 -0.1 -0.1 
23RA23-st11 56.7 51.2 5.5 6.4 47WA14-st11 31.5 38.0 -6.5 -8.2 
24KA24-st11 56.3 56.7 -0.4 -0.5 48RA40-st11 31.2 32.6 -1.4 -1.9 
aExperimental melting temperature. tm.0C.[34] Proteins are arranged in order of decreasing tm, Mutants 
49–53 (VA22-st11, EA36-st11, IA37- st11, VA41- st11, and FA45-st11) were extracted in the QSAR 
study due to its nonaccurate tm values (<20 0C), which is not useful for MLR analysis. The st6 and st11 
refer to C-terminal sequences of the mutant proteins.[34] 
bCalculated tm values by the Eq. 24. 
cResidual: tm (Obs.) - tm (Cal.). 
dResidual by LOO cross-validation procedures (deleted residual). 
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Table 9. Results of the non-stochastic bilinear indices-driven ADL models of the Arc 
A-mutants in the training and test set. 

Mutant ΔP%b P(H)c P(P)c Mutant ΔP%b P(H)c P(P)c 

Mutants with near wild type stability (H) Mutants with reduced stability(P) 
1PA8-st6a 99.95 1.00 0.00 29IA51-st11 -99.11 0.00 1.00 
2SA35-st6 92.63 0.96 0.04 30GA49-st11a -59.42 0.20 0.80 
3NA34-st11 94.96 0.97 0.03 31LA19-st6 -4.14 0.48 0.52 
4NA11-st6a 99.96 1.00 0.00 32GA30-st11 -98.66 0.01 0.99 
5QA39-st11 99.60 1.00 0.00 33RA50-st11 -77.55 0.11 0.89 
6GA52-st11 9.67 0.55 0.45 34KA47-st11 -34.15 0.33 0.67 
7KA6-st6a 100.00 1.00 0.00 35PA15-st11a -63.06 0.18 0.82 
8RA16-st6 99.97 1.00 0.00 36SA44-st11 -99.98 0.00 1.00 
9VA25-st6 98.45 0.99 0.01 37NA29-st11 -99.90 0.00 1.00 
10MA4-st6 99.50 1.00 0.00 38VA33-st11 -99.82 0.00 1.00 
11Arc-st6a 99.99 1.00 0.00 39EA48-st11 -16.56 0.42 0.58 
12EA27-st6 99.67 1.00 0.00 40LA12-st11 -99.82 0.00 1.00 
13KA2-st6 100.00 1.00 0.00 *41FA10-st6a 76.85 0.88 0.12 
14QA9-st6 99.98 1.00 0.00 42LA21-st11 -99.97 0.00 1.00 
15GA3-st6 99.98 1.00 0.00 43RA31-st11 -99.80 0.00 1.00 
16MA1-st6a 99.83 1.00 0.00 44MA42-st11 -97.57 0.01 0.99 
17Arc-st11 62.49 0.81 0.19 45SA32-st11a -37.11 0.31 0.69 
18SA5-st6 99.99 1.00 0.00 46YA38-st11 -85.72 0.07 0.93 
19RA13-st6 100.00 1.00 0.00 47WA14-st11 -98.49 0.01 0.99 
20KA46-st11 99.23 1.00 0.00 48RA40-st11 -100.00 0.00 1.00 
21EA17-st6a 100.00 1.00 0.00 49VA22-st11 -97.68 0.01 0.99 
22VA18-st6 91.02 0.96 0.04 50EA36-st11a -99.64 0.00 1.00 
23RA23-st11 12.81 0.56 0.44 51IA37-st11 -99.99 0.00 1.00 
24KA24-st11 97.78 0.99 0.01 52VA41-st11 -99.96 0.00 1.00 
25EA43-st6 99.72 1.00 0.00 53FA45-st11 -100.00 0.00 1.00 
26EA28-st11a 43.96 0.72 0.28     
27MA7-st6 99.26 1.00 0.00     
28DA20-st6 99.90 1.00 0.00     
*Mutants that are misclassified by model 21. 
aCompounds in the test set. 
bΔP% = [P(H-group) - P(P-group)] ×100 
cPercentage of probability with which the mutants is predicted as reduced stability/near wild-type stability 
mutants, respectively. 
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Table 10. Results of the stochastic bilinear indices-driven ADL models of the Arc A-
mutants in the training and test set. 

Mutant ΔP%a P(H)b P(P)c Mutant ΔP%a P(H)b P(P)c 

Mutants with near wild type stability Mutants with reduced stability 
1PA8-st6a 90.81 0.95 0.05 29IA51-st11 -99.82 0.00 1.00 
2SA35-st6 99.33 1.00 0.00 30GA49-st11a -97.78 0.01 0.99 
3NA34-st11 85.37 0.93 0.07 31LA19-st6 -23.61 0.38 0.62 
4NA11-st6a 82.75 0.91 0.09 32GA30-st11 -99.40 0.00 1.00 
5QA39-st11 83.47 0.92 0.08 33RA50-st11 -99.13 0.00 1.00 
6GA52-st11 5.76 0.53 0.47 *34KA47-st11 47.28 0.74 0.26 
7KA6-st6a 99.67 1.00 0.00 35PA15-st11a -37.09 0.31 0.69 
8RA16-st6 100.00 1.00 0.00 36SA44-st11 -85.82 0.07 0.93 
9VA25-st6 66.11 0.83 0.17 37NA29-st11 -95.25 0.02 0.98 
10MA4-st6 13.62 0.57 0.43 38VA33-st11 -98.80 0.01 0.99 
11Arc-st6a 100.00 1.00 0.00 39EA48-st11 -94.11 0.03 0.97 
12EA27-st6 98.78 0.99 0.01 40LA12-st11 -99.99 0.00 1.00 
13KA2-st6 99.10 1.00 0.00 41FA10-st6a -89.82 0.05 0.95 
14QA9-st6 99.38 1.00 0.00 42LA21-st11 -99.85 0.00 1.00 
15GA3-st6 96.73 0.98 0.02 43RA31-st11 -99.41 0.00 1.00 
16MA1-st6a 87.80 0.94 0.06 44MA42-st11 -98.86 0.01 0.99 
17Arc-st11 99.69 1.00 0.00 45SA32-st11a -81.42 0.09 0.91 
18SA5-st6 99.71 1.00 0.00 46YA38-st11 -96.44 0.02 0.98 
19RA13-st6 99.99 1.00 0.00 47WA14-st11 -96.27 0.02 0.98 
20KA46-st11 37.83 0.69 0.31 48RA40-st11 -27.72 0.36 0.64 
21EA17-st6a 99.79 1.00 0.00 49VA22-st11 -98.63 0.01 0.99 
22VA18-st6 73.50 0.87 0.13 *50EA36-st11a 57.60 0.79 0.21 
23RA23-st11 95.59 0.98 0.02 51IA37-st11 -98.60 0.01 0.99 
24KA24-st11 79.13 0.90 0.10 52VA41-st11 -97.23 0.01 0.99 
25EA43-st6 99.73 1.00 0.00 53FA45-st11 -99.81 0.00 1.00 
26EA28-st11a 94.00 0.97 0.03     
27MA7-st6 85.08 0.93 0.07     
28DA20-st6 100.00 1.00 0.00     
*Mutants that are misclassified by model 22. 
aCompounds in the test set. 
bΔP% = [P(H-group) - P(P-group)] × 100 
cPercentage of probability with which the mutants is predicted as 
reduced stability/near wild-type stability mutants, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 49

Table 11.Experimental and calculated values of melting temperature (tm) obtained by 
Eqs. 25 and 26. 
Mutant Obs.a Cal.b Res.c Mutant Obs.a Cal.b Res.c 

1PA8-st6 74.1 outlier 25EA43-st6 56.1 56.4 -0.3 
2SA35-st6 63.4 58.8 4.6 26EA28-st11 55.7 58.3 -2.6 
3NA34-st11 63.0 58.4 4.6 27MA7-st6 55.5 57.8 -2.3 
4NA11-st6 62.1 59.0 3.1 28DA20-st6 55.3 57.7 -2.4 
5QA39-st11 61.4 58.9 2.5 29IA51-st11 50.9 49.0 1.9 
6GA52-st11 60.9 60.3 0.6 30GA49-st11 48.7 50.1 -1.4 
7KA6-st6 59.6 59.2 0.4 31LA19-st6 48.3 43.6 4.7 
8RA16-st6 59.5 57.0 2.5 32GA30-st11 47.9 45.0 2.9 
9VA25-st6 59.3 58.3 1.0 33RA50-st11 47.9 44.6 3.3 
10MA4-st6 59.2 58.4 0.8 34KA47-st11 47.2 44.6 2.6 
11Arc-st6 59.0 59.0 0.0 35PA15-st11 46.6 46.5 0.1 
12EA27-st6 58.8 58.3 0.5 36SA44-st11 46.3 41.6 4.7 
13KA2-st6 58.7 58.7 0.0 37NA29-st11 45.3 44.5 0.8 
14QA9-st6 58.4 59.1 -0.7 38VA33-st11 44.1 47.2 -3.1 
15GA3-st6 58.1 59.1 -1.0 39EA48-st11 43.2 44.9 -1.7 
16MA1-st6 58.0 58.0 0.0 40LA12-st11 42.3 40.7 1.6 
17Arc-st11 57.9 58.8 -0.9 41FA10-st6 40.6 44.4 -3.8 
18SA5-st6 57.5 59.0 -1.5 42LA21-st11 39.6 39.5 0.1 
19RA13-st6 57.3 58.0 -0.7 43RA31-st11 37.1 40.1 -3.0 
20KA46-st11 57.1 58.3 -1.2 44MA42-st11 35.6 41.3 -5.7 
21EA17-st6 57.0 59.1 -2.1 45SA32-st11 33.5 outlier 
22VA18-st6 56.9 57.8 -0.9 46YA38-st11 33.0 38.2 -5.2 
23RA23-st11 56.7 57.0 -0.3 47WA14-st11 31.5 27.8 3.7 
24KA24-st11 56.3 59.8 -3.5 48RA40-st11 31.2 33.7 -2.5 
aExperimental melting temperature. tm.0C.[34] Proteins are arranged in order of decreasing tm. Mutants 
49–53 (VA22-st11, EA36-st11, IA37- st11,VA41- st11and FA45-st11) were extracted in the QSAR study 
due to its nonaccurate tm values (<20 0C), which is not useful for Piecewise method. The st6 and st11 
refer to C-terminal sequences of the mutant proteins.[34] 
bCalculated tm values by the nonlinear model Eqs. 25 and 26. 
cResidual: tm (Obs.) - tm (Cal.). 
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Table 12.Experimental and calculated values of melting temperature (tm) obtained by 
eqs. 27 and 28. 
Mutant Obs.a Cal.b Res.c Mutant Obs.a Cal.b Res.c 

1PA8-st6 74.1 outlier 25EA43-st6 56.1 58.3 -2.2 
2SA35-st6 63.4 58.3 5.1 26EA28-st11 55.7 56.7 -1.0 
3NA34-st11 63.0 59.4 3.6 27MA7-st6 55.5 58.2 -2.7 
4NA11-st6 62.1 60.0 2.1 28DA20-st6 55.3 57.9 -2.6 
5QA39-st11 61.4 58.2 3.2 29IA51-st11 50.9 46.3 4.6 
6GA52-st11 60.9 59.6 1.3 30GA49-st11 48.7 51.6 -2.9 
7KA6-st6 59.6 58.3 1.3 31LA19-st6 48.3 43.5 4.8 
8RA16-st6 59.5 56.9 2.6 32GA30-st11 47.9 43.5 4.4 
9VA25-st6 59.3 59.1 0.2 33RA50-st11 47.9 51.5 -3.6 
10MA4-st6 59.2 58.1 1.1 34KA47-st11 47.2 48.7 -1.5 
11Arc-st6 59.0 58.9 0.1 35PA15-st11 46.6 46.6 0.0 
12EA27-st6 58.8 58.3 0.5 36SA44-st11 46.3 45.2 1.1 
13KA2-st6 58.7 57.9 0.8 37NA29-st11 45.3 42.0 3.3 
14QA9-st6 58.4 59.5 -1.1 38VA33-st11 44.1 45.6 -1.5 
15GA3-st6 58.1 58.8 -0.7 39EA48-st11 43.2 43.5 -0.3 
16MA1-st6 58.0 58.7 -0.7 40LA12-st11 42.3 39.2 3.1 
17Arc-st11 57.9 58.7 -0.8 41FA10-st6 40.6 43.0 -2.4 
18SA5-st6 57.5 58.6 -1.1 42LA21-st11 39.6 38.3 1.3 
19RA13-st6 57.3 58.2 -0.9 43RA31-st11 37.1 36.1 1.0 
20KA46-st11 57.1 58.2 -1.1 44MA42-st11 35.6 38.7 -3.1 
21EA17-st6 57.0 59.1 -2.1 45SA32-st11 33.5 outlier 
22VA18-st6 56.9 58.1 -1.2 46YA38-st11 33.0 33.3 -0.3 
23RA23-st11 56.7 57.2 -0.5 47WA14-st11 31.5 36.5 -5.0 
24KA24-st11 56.3 59.6 -3.3 48RA40-st11 31.2 34.1 -2.9 
aExperimental melting temperature. tm.0C.[34] Proteins are arranged in order of decreasing tm. Mutants 
49–53 (VA22-st11, EA36-st11, IA37-st11,VA41-st11, and FA45-st11) were extracted in the QSAR study 
due to its nonaccurate tm values (<20 0C), which is not useful for Piecewise method. The st6 and st11 
refer to C-terminal sequences of the mutant proteins.[34] 
bCalculated tm values by the nonlinear model Eqs. 27 and 28. 
cResidual: tm (Obs.) - tm (Cal.). 
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Table 13. Comparison between LDA statistical parameters from protein’s bilinear indices classification models with other reported ´in silico’ 1 
methods. 2 

Methodsa Accuracy 
(%) %Nwtb %RSb %NCb N λ 

Wilks  F p-level MCC Model 
Descriptors 

Eq/Ref 

Non-Stochastic Protein 
Bilinear indices 100 100 100 0.0 41 0.24 28.08 <0.0001 1.00 

Class =-45,329-5.00x10-3 Z1-ISAb0( mm yx , ) -
1.00x10-3 Z2-Z3b6( mm yx , ) +2.00 x10-3 Z2-

HPIb5( mm yx , )-0,435ECI-PIb2( mm yx , ) 

Stochastic Protein 
Bilinear indices 97.56 100 95.00 0.0 41 0.29 21.61 <0.0001 0.95 

 
Class = 24.797-5.00x10-3 Z1-ISA  sb2( mm yx , )  
-53,074ECI-HPIsb0( mm yx , )-0,465Z2-ECI 

sb1( mm yx , ) - 0,152 Z2-HPI sb6( mm yx , ) 
Linear Indices 97.56 95.23 100 0.0 41 0.31 15.25 <0.0001 0.95  [47] 
Quadratic Indices 85.4 85.0 85.7 0.0 41 0.47 9.89 <0.0001 0.71  [44] 
Protein Stochastic Moments 81.13 71.4 92.0 - 53 0.63 14.5 <0.001 -  [87] 
ξ1 81.1 71.4 92.0 - 53 0.63 29.57 <0.001 -  [29] 
Δθ0 81.1 71.4 92.0 0.0 53 0.56 39.05 0.00 0.64  [30] 
D-Fire 76.9 92.9 58.3 3.8 53 0.79 13.9 0.00 0.55  [30] 
Surface 70.7 63.6 78.9 22.6 53 0.85 8.8 0.00 0.43  [30] 
Volume 62.3 53.6 72.0 0.0 53 0.92 4.2 0.00 0.26  [30] 
Log P 59.0 80.8 15.4 26.4 53 0.99 0.5 0.5 0.05  [30] 
Refractivity 60.0 77.3 38.9 24.5 53 0.97 1.8 0.2 0.18  [30] 
Validation Method 

Methodsa Validation 
methodc 

Accuracy (test  
set)d 

%TL- 
25%-O b D2 F P (F) - level MCC 

Non-Stochastic Protein 
Bilinear indices i 91.67 - 11.88 8.08 <0.0001 0.84 

Stochastic Protein 
Bilinear indices i 91.67 - 9.14 1.61 <0.0001 0.84 

Linear Indices i 91.67 - 8.72 5.25 <0.0001 0.84 
Quadratic Indices i 91.67 - 4.40 9.89 <0.0001 0.84 
Protein Stochastic Moments - - - 
ξ1 - - - 
Δθ0 ii N 79.5 
D-Fire ii N 71.8 
Surface ii N 61.5 
Volume ii N 56.4 
Log P ii N 48.7 
Refractivity ii N 61.5 
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a Non-stochastic and Stochastic Bilinear Indices are reported in this work; Δθ0, D-Fire, surface, volume, log P, and refractivity are reported by R de Armas et al.;[30] Protein 3 
stochastic moments are published in [87] and ξ1 in [29].  4 

 bParameters verifying model quality: %Nwt, %RS, %NC, %TL-25%-O are the near wild-type group, reduced-stability group, nonclassified, and total after leave-25%-out 5 
percentages of good classification. 6 

 cValidation methods are: (i) test set and (ii) leave-25%-out. 7 
 dTest set of 12 A-mutants of the Arc repressor. 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 



 53

Table 14. Comparison between LMR parameters of Protein’s Bilinear Indices and other 38 
TOMOCOMD-CARDD reported methods.   39 

Linear Multiple Regression parameters 
Methods R R2 s q2 scv F p-level 

Nonstochastic Protein’s 
Bilinear Indices 0.91 0.83 3.9 0.73 4.50 33.08 <0.0001 

Stochastic Protein’s 
Bilinear Indices 0.90 0.81 4.19 0.64 5.01 28.24 <0.0001 

Protein’s Linear 
Indices[47] 0.90 0.81 4.29 0.72 4.79 26.48 <0.0001 

Protein’s Quadratic 
Indices[44] 0.85 0.72 5.64 0.55 6.24 9.04 <0.0001 
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Figure 1. Linear correlations of observed versus calculated melting point according to 91 
the model obtained from non-stochastic bilinear indices (Eq. 23). 92 
 93 
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 95 

Figure 2. Linear correlations of observed versus calculated melting point according to 96 
the model obtained from stochastic bilinear indices (Eq. 24). 97 
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Figure 3. Dependence of global good classification (accuracy) between tm (two-class) 101 
and the protein bilinear indices calculated by using different amino-acid weights, which 102 
was composed by the pairs-combination of six amino-acid side-chain properties.   103 

 104 
Figure 4. Dependence of global good classification (accuracy) between tm (two-class) 105 
and the protein bilinear indices calculated at different orders k (k = 0-40).   106 
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