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ABSTRACT 

Quantitative structure-affinity relationships were applied by multiple linear regression (MLR) 

analysis for a series of 21 monoazo dyes. Calculated 0D, 1D and 2D structural dye features were 

correlated to their affinity for cellulose. Variable selection was performed by the genetic algorithm. 

Good correlations with dye affinity and models with predictive power were obtained. Electrostatic 

interactions are favorable and hydrophobic disfavorable for dye binding on cellulose. 

 

INTRODUCTION 

Several computational methods have been employed in the study of textile adsorption on cellulose 

fibre [1, 2].  

The classical QSAR methods rely principally on the mathematical technique of multiple 

linear regression (MLR). This means an easy interpretation of the results, especially when the fibre 

affinities of the dye molecules are related to simple and clearly defined physico-chemical 

parameters, but implies some risks of chance correlation. This disadvantage can be improved by the 

introduction of several criteria during the variable selection. The number of parameters potentially 

important for the dye fibre interaction can be large and this leads to the use of multivariate 

statistical methods, like principal component analysis, principal component regression analysis or 

PLS (projection in latent structures). These methods successfully handle large matrices of predictor 

variables, although sometimes with disadvantage of clarity as well as of physical and chemical 

interpretation. 
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This paper presents a quantitative structure-affinity relationships study for a series of azo 

dyes by the multiple linear regression (MLR) method. Structural dye features obtained by molecular 

modeling techniques were correlated to their affinity for cellulose. Variable selection was 

performed by the genetic algorithm and several MLR models were obtained. They give information 

on the dye adsorption mechanism on fibre. 

 

METHODS AND MATERIALS 

Molecular descriptors 

A series of 21 dyes was considered, having as dependent variable the affinity for cellulose fibre 

taken from literature [3-5] (see table 1).  

The molecular dye structures were built by the ChemOffice package [6] and energetically 

optimized by molecular mechanics calculations. The optimized structures were further used to 

derive structural dye descriptors. Several types of 0D, 1D and 2D descriptors were calculated by the 

Dragon software [7] : constitutional (e.g. MW-molecular weight,  AMW-average molecular weight, 

Mp-mean atomic polarizability (scaled on Carbon atom), Me-mean atomic Sanderson 

electronegativity (scaled on Carbon atom), Ss-sum of Kier-Hall electrotopological states, nS-

number of Sulfur atoms, SCBO-sum of conventional bond orders (H-depleted)), functional groups 

counts (like: nCp- number of terminal primary C(sp3) atoms, nHBonds-number of intramolecular 

H-bonds (with nitrogen, oxygen, fluorine), nThiazoles-number of Thiazoles, nSO2OH- number of 

sulfonic (thio-/dithio-) acids) and molecular properties (like: ALOGP-Ghose-Crippen octanol-water 

partition coefficient, TPSA(Tot)-topological polar surface area using nitrogen, oxygen, sulphur, 

phosphor polar contributions). Descriptors included in the final MLR models are presented in table 

2. 

 

Multiple Linear Regression (MLR) 

Multiple linear regression relates one experimental variable yk to one or several structural variables 

xi by the equation [8]: 

∑ +⋅+=
i

kikiok exbby                                                                                   (1) 

where b represents regression coefficients and e the deviations and residuals. MLR calculations 

were performed by the STATISTICA package [9]. 

 

 

 



Table 1. The studied compounds and their affinities (A) 

 

 

 

No. 

Compound structure 

X N N Y
 

 

A 

(kJ/mole) 

 

 

No. 

Compound structure 

X N N Y
 

 

A 

(kJ/mole) 

 

1 

N

SH3C  

 

γb 

 

22.26 

 

11 H

N

N
 

 

H 

 

9.49 

 

2 

N

N
H  

 

γb 

 

15.69 

 

12 
N

N N

N
H  

 

γb 

 

8.58 

 

3 

N

N  
 

γa 

 

14.35 

 

13 

N

N
H  

 

C 

 

7.70 

 

4 

N

SH3C  
 

H 

 

14.48 

 

14 
N

N

N
H  

 

H 

 

7.24 

 

5 

N

N  
 

H 

 

13.56 

 

15 
N

N N

N
H  

 

H 

 

6.61 

 

6 H

N

N
 

 

γb 

 

13.18 

 

16 H

N

N
 

 

R 

 

5.23 

 

7 N

N

N
H  

 

γb 

 

10.92 

 

17 
N

N N

N
H  

 

R 

 

4.60 

 

8 

N

SH3C  

 

C 

 

10.50 

 

18 
N

N

N
H  

 

R 

 

4.48 

 

9 

N

SH3C  

 

R 

 

9.62 

 

19 H

N

N
 

 

C 

 

3.59 

 

10 

N

N
H  

 

R 

 

8.79 

 

20 
N

N

N
H  

 

C 

 

2.97 

     

21 
N

N N

N
H  

 

C 

 

1.92 

a A - experimental affinities; Y - coupling components: γ acid coupled in acidic (γa),  respectively 

basic (γb) medium, H - H acid, C - chromotropic acid, R - R acid 

 

Model validation 

In order to test the predictive power of the model, the following statistical measures were used [10]: 

1) correlation coefficient R between the predicted and observed activities; 2) coefficient of 

determination for linear regressions with intercepts set to zero, i.e. 2
0R   (predicted versus observed 

activities), and 2'
0R  (observed versus predicted activities); 3) slopes k and k' of the above mentioned 



two regression lines. The following conditions should be satisfied for an acceptable predictive 

power model: 

q2 > 0.5         (2) 

R2 > 0.6         (3) 
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In addition to these criteria, 2
extQ  values were calculated by the MobyDigs software [11] to 

test the predictive power of the model obtained from the training set compounds. The external 

validation technique uses a test set to perform a further check on the predictive capabilities of a 

model obtained from a training set and with predictive power optimized by an evaluation set. By 

using the selected model the values of the response for the test objects are calculated and the quality 

of these predictions is defined in terms of Q2
ext, which is defined as: 
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where the sum runs over the test set objects (next) and y, 
∧
y  and y are the experimental, predicted, 

respectively the average values of the training set responses.  

 

RESULTS AND DISCUSSIONS 

The series of 21 dyes was studied by molecular mechanics calculations and the optimized structures 

thus derived were used to calculate dye descriptors. The descriptors used in the final MLR model 

are presented in table 2. MLR calculations have been performed by the STATISTICA software [9].  

From the entire set of dyes, a training set of 16 compounds and a test set of 5 compounds: no. 

2, 6, 15, 17, 19 (see table 1) were considered. The test set compounds were selected consulting the 

scores scatter plots of the first three principal components (82.1 % of the variance explained) for the 

principal component analysis (PCA) model constructed using the matrix of the whole set of 

descriptor variables for the 21 analyzed compounds. We have included in the test set one of two 

similar compounds (grouped together) positioned on the opposite sides of the plot origin in the four 



quadrants of the respective plots. PCA analysis was performed by the SIMCA-P+ software [12]. 

Variable selection was carried out by the genetic algorithm included in the MobyDigs program [11], 

using the RQK function [13], as fitness function. Leave-one-out crossvalidation and bootstrapping 

techniques were used for the internal validation of the obtained MLR models. 

 

Table 2. Calculated dye descriptors: average molecular weight (AMW), number of terminal 

primary C(sp3) atoms (nCp), topological polar surface area using nitrogen, oxygen, sulphur, 

phosphor polar contributions (TPSA(Tot)), number of sulfonic (thio-/dithio-) acids (nSO2OH), 

number of intramolecular H-bonds (with N,O,F) (nHBonds),Ghose-Crippen octanol-water partition 

coefficient (AlogP) 

 

No. AMW nCp TPSA(tot) nSO2OH nHBonds AlogP 

1 9.43 1 174.85 1 1 5.552 

2 9.19 0 162.4 1 1 4.498 

3 9.19 0 162.4 1 2 4.498 

4 10.29 1 211.58 2 2 5.262 

5 10.09 0 199.13 2 2 4.208 

6 9.31 0 162.4 1 1 2.87 

7 9.55 0 175.29 1 1 2.346 

8 10.19 1 237.6 2 2 4.516 

9 10.39 1 231.81 2 2 4.995 

10 10.2 0 219.36 2 2 3.94 

11 10.32 0 199.13 2 1 2.58 

12 9.8 0 188.18 1 1 2.436 

13 9.99 0 225.15 2 2 3.461 

14 10.57 0 212.02 2 1 2.452 

15 10.83 0 224.91 2 2 2.146 

16 10.44 0 219.36 2 2 2.312 

17 10.94 0 245.14 2 2 1.878 

18 10.68 0 232.25 2 2 1.789 

19 10.2 0 225.15 2 2 1.833 

20 10.44 0 238.04 2 2 1.31 

21 10.68 0 250.93 2 2 1.399 



 

Two MLR models were found to be predictive. They are presented in Table 3. Best 

correlations with dye affinity and statistical results were noticed in model 1. 

The predictive power of the best MLR model was then checked by the criteria stated by A. 

Tropsha et al [10] (see equations (2) to (6)). All these calculated criteria indicated a model with 

predictive power, respectively:  
2
extQ = 0.929 > 0.5 

R2 = 0.951 > 0.6  
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Table 3. Final MLR models for the series of 21 dyes* 

 
No Model R2 Q2 Q2

boot Q2
ext a(r2) a(q2) F s 

1 A = -151.48 (±35.23) – 7.05 

(±0.96) nSO2OH + 350.16 

(±51.37) nHBonds – 0.62 

(±0.23) ALOGP 

0.951 0.828 0.803 0.923 0.257 -0.429 37.77 1.75 

2 A = 38.96 (±4.10) + 6.85 

(±1.12) nCp - 0.15 (±0.02) 

TPSA(tot) 

0.874 0.809 0.822 0.897 0.056 -0.403 45.02 1.93 

* R2 - squared multiple regression coefficient, Q2 - leave-one-out cross-validated R2, Q2
boot - 

bootstrapping Q2, Q2
ext - external Q2 (for the test set), Y-scrambling  parameters [14] (a(r2), a(q2)), 

F- Fischer test, s- standard deviation 

 

 Hydrogen bonds between dye and cellulose are expected to have highest contribution to the 

dye affinity. Dye sulfonic acid groups and dye hydrophobicity are detrimental for the dye binding. 

Dye polar surface area decrease the dye affinity, being probably related to the hydrophobic 

interactions at the dye surface-dyebath solution interface. 

 

 



CONCLUSIONS 

Dye binding to cellulose was studied by correlations of dye affinity values with dye descriptors by 

the multiple linear regression (MLR) method. Dye structures were modeled by molecular 

mechanics and 0D, 1D and 2D descriptors were derived from the optimized structures.  

The dye affinity for cellulose increases with the increased number of hydrogen bonds. Dye 

sulfonic acid groups, hydrophobicity and polar surface area disfavored the dye binding to cellulose. 

Sulfonic acid groups probably participate only to dye solubilizing in the dyeing environment. 
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