

Proceeding Paper

Climate Forcings and Their Influence in the Cordillera Blanca, Perú, Deduced from Spectral Analysis Techniques ⁺

Adrián Fernández-Sánchez ^{1,2,*}, José Úbeda ^{1,2}, Luis Miguel Tanarro ¹, Nuria Naranjo ³, Jose Antonio Álvarez ⁴ and Johan Chancafé ⁵

- ¹ Department of Geography, Complutense University of Madrid, Geography and History School, St. Profesor Aranguren s/n, 28040 Madrid, Spain; joseubeda@ucm.es (J.Ú.); pace@ghis.ucm.es (L.M.T.)
- ² Guías de Espeleología y Montaña, Casilla del Mortero, s/n, 28189 Madrid, Spain
- ³ Hydrogeology Center, Malaga University, Ada Byron Investigation Building, Module B, 1st floor. St. Arquitecto Francisco Peñalosa, 18, 29590 Málaga, Spain; nuria.naranjo.phd@gmail.com
- ⁴ Civil Engineering Department, Universidad de Cartagena, St. San Agustín, Cra. 6, N^a 36-100, Cartagena de Indias 130001, Colombia; jalvareza@unicartagena.edu.co
- ⁵ Servicio Nacional de Meteorología e Hidrología de Perú, Jr. Cahuide 785, Jesús María, 15072, Lima, Perú; chancafe.clima@gmail.com
- * Correspondence: adrferna@ucm.es; Tel.: +34-605843486
- + Presented at 5th International Electronic Conference on Atmospheric Sciences, 16–31 July 2022; Available online: https://ecas2022.sciforum.net/.

Abstract: The Cordillera Blanca of Peru (Central Andes) is the highest elevation of the country, and is mostly affected by tropical and regional climate forcings. Spectral techniques are applied to temperature and precipitation records in order to discern the hidden periodicities and to correlate the influence of different climate forcings indexes that are also submitted to analysis. Similar periodicities are found for MJO and intra and interseasonal scale temperature events; while Humboldt Current and SALLJ periodicities are close to annual meteorological events; and ENSO and ITCZ displacement are correlated with interannual scale temperature and precipitation events.

Keywords: Peru climate; climate forcings; spectral analysis; climatology; ENSO; ITCZ; MJO; Cordillera Blanca

1. Introduction

Determining the influence of climatic forcings on the climatic variability of a region is of special importance to forecast the behavior of the regional climatic system as well as the natural and ecological processes derived from it. In the context of global warming [1], it is necessary to characterize the influence of the factors that regulate the regional climate due to the possibility of change in the mechanisms of action.

Spectral analysis techniques have been widely used in Earth Sciences, especially in astrophysics [2], climatology [3], as well as in air quality assessment [4]. Few climatic studies have been carried out in the South American region using the spectral analysis technique, being mostly paleoclimatic analyzes of sedimentary cores [5], or ice cores [6]. In Peru itself, this technique would only have been used to determine the probability of the change in the intensity of the ENSO phenomenon [7].

These techniques are normally useful for the study and characterization of the climate, while their use in the comparison between climate forcings and meteorological records, has been more limited. The aim of this work is to perform spectral analysis techniques in 34-year daily meteorological records for stations located in the vicinity of the Cordillera Blanca of Peru, in the Central Andes.

The Cordillera Blanca (7°9′ S–11°39′ S and 78°30′ W–76°11′ W) is one of the areas with the highest elevations in the country, with up to 30 peaks in an altitude greater than 6000

Academic Editor: Anthony Lupo

Published: 14 July 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). m. This mountain range would be affected by a tropical climate framework and a strong influence of forcings such as the El Niño Southern Oscillation (ENSO), the displacement of the Intertropical Convergence Zone (ITCZ) or the Madden-Julian Oscillation (MJO).

2. Methodology

Precipitation, maximum and minimum temperature records on a daily scale, were chosen from up to 17 meteorological stations (Table 1) located in the Cordillera Blanca range. The meteorological data was provided by the peruvian meteorological service (SENAMHI) and the Agroancash organization (Carhuaz station). The time range chosen was between 1 January 1986 and 31 December 2019, covering a period of 34 years. These data series have been previously standardized (completed and homogenized) and subjected to detrending techniques in Fernández–Sánchez et al. [8].

Meteorological	Chosen period	Variable	Altitude
Stations			(m.a.s.l)
Aija	1999 – 2019	P., Max. T, Min.T.	3478
Cachicadan	1986 – 2019	P., Max. T, Min.T.	2885
Cajamarca	1986 – 2019	P., Max. T, Min.T.	2686
Cajatambo	1990 – 2019	P., Max. T, Min.T.	3405
Casapalca	1987 – 2019	Precipitation	4924
Carhuaz	1986 – 2016	P., Max. T, Min.T.	2644
Chavín	2000 - 2019	P., Max. T, Min.T.	3132
Chiquián	1986 – 2019	P., Max. T, Min.T.	3412
Dos de Mayo	2000 - 2019	P., Max. T, Min.T.	3474
Huamachuco	1986 – 2019	P., Max. T, Min.T.	3178
Huánuco	1986 – 2019	P., Max. T, Min.T.	1918
Matucana	1986 – 2019	P., Max. T, Min.T.	2417
Oyón	1986 – 2019	P., Max. T, Min.T.	3663
Pomabamba	1989 – 2019	P., Max. T, Min.T.	2975
A. Weberbahuer	1986 – 2019	P., Max. T, Min.T.	2666
Huaraz	1998 – 2019	P., Max. T, Min.T.	3071
Recuay	1986 – 2019	P., Max. T, Min.T.	3417

Table 1. Meteorological stations used in the present study.

Precipitation (P), Maximum Temperature (Max. T) and Minimum Temperature (Min. T).

Indices of the various climatic forcings that most frequently affect the Cordillera Blanca were obtained. These data, recorded at various time scales (daily, monthly and annual), were also subjected to spectral analysis techniques. Table 2 collects the indices used in this study. The forcings of solar activity, the Pacific Decadal Oscillation (PDO), the Choco Low Level Jet, the Caribbean Low level jet or the South American Monsoon System, were not subjected to spectral analysis due to the large number of recent studies that have determined their periodicity, although they were used for comparison in the discussion section.

Spectral analysis allows data series to be decomposed into cycles that may be superimposed on temporal variability and that would be difficult to recognize with the naked eye. The three meteorological variables treated in this study were evaluated with the spectral analysis technique using the PAST software [9]. PAST is based on the Lomb-Scargle periodogram algorithm [10].

Index	Region	Period
ONI Index (ENSO) [11]	Equatorial Pacific	1950 – 2021
SST Index [12]	El Niño 1+2	1982 – 2021
Humboldt Current [13]	7 – 9ºS latitude	1997 – 2017
Sun radiation [14]	Global	1978 – 2019
ITCZ displacement [15]	90 – 60ºW long.	1979 – 2005
Bolivian High [16]	Bolivia	1979 – 2014
SALLJ [17]	Eastern Andes	1979 – 2018
Chocó LLJ [18]	Colombia North	1978 – 2010
Caribbean LLJ [19]	Caribbean Sea	1979 – 2010
MJO Index [20]	40º W longitude	1979 – 2021

Table 2. Indexes and description of the main climate forcings indexes used in the study comparison.

3. Results

Tables 3 and 4 summarize the periodicities identified in the meteorological records spectral analysis. Very clear spectral signatures are detected in the periods of 122, 182 and 365 days, and these three values can be determined as the main periodicities.

The secondary periods would be much more distributed in all the data series and would not be coincident for all the variables or all the seasons. Therefore, the discernible secondary cycles for this study would be 27 to 30 days, 42 to 50 days, 90 days, 1.3 years, 1.6 years, 1.9 years, 3 years, 4.5 years, 5 to 7 years, and 11 to 12 years.

 Table 3. Identified periodicities for each meteorological variable in an intraseason, interseason and annual scales.

Variable	Intraseasonal	Intraseasonal	Intraseasonal	Interseasonal	Interseasonal	Annual
Maximum T.	27–30 days	46–52 days	90 days	122 days	182 days	365 days
Minimum T.	27–30 days	46–52 days	90 days	122 days	182 days	365 days
Precipitation	No period	46–52 days	90 days	122 days	182 days	365 days

Table 4. Identified periodicities for each meteorological variable in an interannual and interdecadal scales.

Variable	Interannual	Interannual	Interannual	Interannual	Interannual	Interannual	Interdec.	Interdec.
Maximum T.	1 year 3 m.	1 year 6 m.	1 year 9 m.	3 years	4 years 6 m	5.6–7 y	11–12 y	14–18 y
Minimum T.	1 year 3 m.	1 year 6 m.	1 year 9 m.	3 years	4 years 6 m	5.6–7 y	11–12 y	No period
Precipitation	No period	1 year 3 m.	1 year 9 m.	No period	No period	5.6–7 y	11–12 y	14–18 y
		// T // ·			11 // //	1.4.	. 1 //	1 11

"T" meaning temperature, "m" means months, "y" means year and "interdec" means interdecadal.

The results of the climatic forcings spectral analysis are shown in Tables 5 and 6. No discernible spectral cycles would be found in the existing data for the Caribbean Low Level Jet, the Bolivian Alta and the Chocó Low Level Jet.

Index	Annual	Interannual	Interannual	Interannual	Interdecadal
ONI Index	1 year	1 y. 5m.	3 y. 3 m.	4.7 – 5.5 y	11 y. 10 m.
SST Index	1 year	NP	NP	4 years	NP
Humboldt Curr.	1 y. 1m.	2 y. 3 m.	NP	4 y. 6 m.	NP
ITCZ displ.	NP	NP	3 years	NP	NP
SALLJ	1y. 2m.	2 y. 7 m.	NP	5 y. 6 m.	9 y. 3 m.
MJO Index	NP	NP	NP	NP	NP
ENSO	1 year	NP	NP	4.7 – 5 y	11 years

Table 5. Periodicities found for each climatic forcing in the Cordillera Blanca region in annual, interannual and interdecadal scales.

Where "NP" No Periodicities, "m" means months and "y" year.

Table 6. Periodicities found for each climatic forcing in the Cordillera Blanca region in intraseasonal and interseasonal scales.

Index II	Interseasonal	Interseasonal	Interseasonal	Interseasonal	Interseasonal	Interseason
ONI Index N	NP	NP	NP	NP	NP	NP
SST Index N	NP	NP	NP	NP	NP	NP
Humboldt Curr. N	NP	NP	NP	NP	6 months	10 months
ITCZ displ. N	NP	NP	NP	NP	NP	NP
SALLJ 2	25 days	NP	NP	NP	4.7 months	9 months
MJO Index 2	21 days	36 days	1.5 months	2.5 months	3 months	NP
ENSO N	NP	NP	NP	NP	NP	NP

Where "NP" No Periodicities, "m" means months and "y" year.

4. Discussion

High spectral power periods have been detected (122 days-4 months, 182 days-6 months and 365 days-1 year) and exist in most of the stations for all the variables.

The period of 182 days would have a good correspondence with the forcing of the intensification and de-intensification of the Humboldt Current, which according to the spectral analysis carried out, would have a biannual behavior (6 months). ITCZ would also have a biannual behavior in its displacement southwards in latitude, as some investigations have defined [21]. Correspondence in cycles of 182 days have also been detected in the Amazonia and highlands of Ecuador [22], as well as in the Natuna Islands [23]. It is quite possible that the displacement towards the South in the ITCZ be the common factor of the three locations.

The 365 days period would be the most powerful and it is present in all the variables of all the seasons. It is likely that this general periodicity in Cordillera Blanca is being led by the forcing activity of the ENSO events, the intensification of the Humboldt Current and the Sea Surface Temperature (SST), which have similar periodicities. In the latter case, the SST would have an indirect correlation by influencing the ENSO and Humboldt Current forcings. Recent researchs have found periodicities of 365 days in the coast, Amazonia and highlands of Ecuador, as well as in Kenya, Hungary and the Natuna Islands [12,13], indicating that the influence could be global.

The 122 days period (4 months) would have a good correspondence with the cyclicity found in the intensification and de-intensification of the Humboldt Current, as well as in the variability found in the present work for the South American Low Level Jet (SALLJ). Under a climatic point of view, the period of 122 days is more notable in the precipitation variable. The Humboldt Current could have an influence on the precipitation of the meteorological stations faced westwards, while the SALLJ would have influence on the precipitation of the stations oriented to the East [14–16]. This period of 4 months would also have been found in the Ecuadorian Amazon [22] determining a regional influence of the SALLJ.

The secondary periods detected on a monthly scale would be the periods of 90 days (3 months), 72 days (2 months and 15 days), 46 days (one month and 15 days) and 27 days. These periods seem have a correspondence with the MJO (periodicities of 27 days, 45 days, 72 days and 91 days) influencing from the modification of the Outgoing Longwave Radiation by the displacement of cloudiness [26] either from of the propagation of Rossby waves [27]. Therefore, the 27-day cycle would be similar to the 21-day cycle found for the SALLJ forcing and in solar activity [2,19]. The 90-day periodicity have been also observed off the coast of Ecuador [22].

The periodicity of the activity of the Humboldt Current (13 months) and the SALLJ (14 months) would be in good agreement with the cycle revealed for the maximum and minimum temperature of 1 year and 3 months, although these forcings would have a greater influence on precipitation, could be affecting from the modification of the cloud cover.

The interannual secondary periods would have a main influence from the ENSO phenomena. In the present study, the ENSO would have yielded periodicities of 3 years and 3 months, close to the 3-year cycle present in the meteorological data, as well as periodicities of 4.7–5 years close to the 4.5-year cycle of both temperature variables. The displacement of the ITCZ could also be associated with the 3-year cycle, as it has a revealed periodicity of 3 years and 3 months. Both forcings would be associated with a greater or lesser cloud cover, creating an increase or decrease in the maximum temperature, a variable with a greater number of 3-year periodicities. Ilyes et al. [22] and Herho et al. [23], would have also observed a cycle of 4.7–5 years on the coast of Ecuador and on Natuna Island, respectively, relating it to the ENSO and Indian Ocean Dipole events.

The ENSO would also be the main forcing that could be influencing the meteorological periodicity of 5.6–7 years as there is literature that would reveal a period of 5 to 7 years [20,21], which would not have been found in the present study. After this cycle, a direct solar influence could also be found on the maximum temperature or indirectly on the ENSO, as there are defined solar cycles between 5 and 5.5 years, and 7.8 years [2]. In the highlands of Bolivia, certain periodicities would have been found that would cover up to 7 years [30], although they would be attributed to the precipitation variable.

The meteorological periodicity of 11–12 years could be associated with solar variability cycles defined in 11 years [31], which would have a great influence on short-term temperatures [32]. The existence of a "cascade" phenomenon from the triple Solar–SST–ENSO phenomenon is very likely, since periodicities of 11 years have been found in the SST [33], and in the ENSO in the present study.

The last cycle detected in the spectral analysis of the meteorological variables would be the double cycle of 16 and 17 years, which could correspond to the variability of the PDO between 12 and 20 years [34].

It has not been possible to find the periodicity associated with the Bolivian High and the Low level Caribbean and Chocó Jets, given that the data records on an annual scale prevents revealing cycles with spectral powers greater than significance. It is required to have data on a monthly or daily scale.

5. Conclusions

Spectral techniques have proven to be a good tool when assessing the periodicities associated with meteorological data and climate forcing data, allowing comparisons to be made of the influence of these forces on regional climate variability.

The present study has revealed that the main periodicities of 122, 182 and 365 days could be associated with the influence of the SALLJ and the Humboldt current for the first

cycle, the displacement of the ITCZ for the second and a joint influence of ENSO and the SST in the last cycle.

Possible direct and indirect relationships between the MJO (and to a lesser extent the SALLJ) and the intra- and inter-seasonal scale periodicities of precipitation and temperature variables have also been revealed. Therefore, it has been possible to relate the joint influence of the activity of the Humboldt Current and the SALLJ in cycles close to the annual periodicity. In periodicities with an interannual scale, the main influences could be the ENSO phenomena in conjunction with solar activity, as well as the displacement of the ITCZ in the meteorological periodicity of 3 years. Interdecadal cycles could be influenced by solar activity and PDO.

6. Patents

Author Contributions: Conceptualization, A.F.-S. and J.Ú.; methodology, A.F.-S.; software, A.F.-S.; validation, J.Ú., L.M.T. and J.A.Á.; formal analysis, A.F.-S, N.N.; investigation, A.F.-S.; resources, J.C.; data curation, A.F.-S., J.C. and N.N.; writing—original draft preparation, A.F.-S.; writing—review and editing, All authors.; funding acquisition, J.Ú. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by PERMAFROST ENSO O81-2021-FONDECYT (75941) project through Peru's Ministry of Education.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available data can be found at SENAMHI (<u>https://www.senamhi.gob.pe/servicios/?p=descarga-datos-meteorologicos</u>, accessed on 21st March 2020) and NOAA (https://www.ncdc.noaa.gov/cdo-web/datasets) websites.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References

- [1] Arias, P.A.; Bellouin, N.; Coppola, E.; Jones, R.G.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.D.; Plattner, G.-K.; Rogelj, J.; et al. Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. https://doi.org/10.1017/9781009157896.002.
- [2] F. R. Zhu and H. Y. Jia, "Lomb–Scargle periodogram analysis of the periods around 5.5 year and 11 year in the international sunspot numbers," *Astrophys. Space Sci.*, vol. 363, no. 138, pp. 1–4, 2018, doi: 10.1007/s10509-018-3332-z.
- Y. Akdi and K. D. Ünlü, "Periodicity in precipitation and temperature for monthly data of Turkey," *Theor. Appl. Climatol.*, vol. 143, no. 3–4, pp. 957–968, 2021, doi: 10.1007/s00704-020-03459-y.
- [4] J. A. Álvarez Aldegunde, A. Fernández-Sánchez, M. Saba, E. Q. Bolaños, and J. Úbeda Palenque, "Analysis of PM 2.5 and Meteorological Variables Using Enhanced Geospatial Techniques in Developing Countries : A Case Study of Cartagena de Indias City (Colombia)," Atmosphere (Basel)., vol. 13(4), no. 506, pp. 1–25, 2022, doi: https://doi.org/10.3390/ atmos13040506.
- [5] F. Lamy, D. Hebbeln, U. Röhl, and G. Wefer, "Holocene rainfall variability in Southern Chile: A marine record of latitudinal shifts of the Southern Westerlies," *Earth Planet. Sci. Lett.*, vol. 185, no. 3–4, pp. 369–382, 2001, doi: 10.1016/S0012-821X(00)00381-2.
- [6] A. Fernández-Sánchez and J. Martín-Chivelet, "Revisión de la estratigrafía del δ18O en sondeos de hielo de glaciares de los Andes Centrales: Implicaciones para la variabilidad climática del Holoceno," p. 4, 2016.
- [7] SENAMHI, "Escenarios Del Cambio Climático en el Perú al 2050: Cuenca del Río Piura," Lima, 2005.
- [8] A. Fernández-Sánchez, J. Úbeda, L. M. Tanarro-Garcia, M. Bonshoms, I. Vidaller, and N. Naranjo-Fernández, "The Climate of

Cordillera Blanca (Perú), 1986 - 2019, according to available meteorological records from 1986 to 2019 years," Unpublished.

- [9] Ø. Hammer, D. A. . Harper, and P. D. Ryan, "PAST: Paleontological Statistics Software Package for Education and Data Analysis.," *Paleaeontologia Electron.*, vol. 4, no. 1, pp. 9, 2001, doi: http://palaeo-electronica.org/2001_1/past/issue1_01.htm.
- [10] N. R. Lomb, "Least-squares frequency analysis of unequally spaced data," Astrophys. Space Sci., vol. 39, no. 2, pp. 447–462, 1976, doi: 10.1007/BF00648343.
- [11] NOAA, "Cold & Warm Episodes by ONI Season," 2022.

 https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed Feb. 20, 2022).
- [12] X. Huang *et al.*, "South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation," *Sci. Adv.*, vol. 6, no. 11, 2020, doi: 10.1126/sciadv.aay6546.
- [13] M. Marrari, A. R. Piola, and D. Valla, "Variability and 20-year trends in satellite-derived surface chlorophyll concentrations in large marine ecosystems around South and Western central America," *Front. Mar. Sci.*, vol. 4, no. NOV, pp. 1–17, 2017, doi: 10.3389/fmars.2017.00372.
- [14] O. Coddington, J. L. Lean, P. Pilewskie, M. Snow, and D. Lindholm, "A solar irradiance climate data record," Bull. Am. Meteorol. Soc., vol. 97, no. 7, pp. 1265–1282, 2016, doi: 10.1175/BAMS-D-14-00265.1.
- [15] H. G. Hidalgo, A. M. Durán-Quesada, J. A. Amador, and E. J. Alfaro, "Connections between the Intertropical Convergence Zone and other climatic features in Central America,", AGU 2013 Meeting of the Americas, 2013, pp. 4.
- [16] C. J. C. Reason, "The Bolivian, Botswana, and Bilybara Highs and Southern Hemisphere drought/floods," *Geophys. Res. Lett.*, vol. 43, no. 3, pp. 1280–1286, 2016, doi: 10.1002/2015GL067228.
- [17] C. Jones, "Recent changes in the South America low-level jet," Clim. Atmos. Sci., vol. 2, no. 1, pp. 1–8, 2019, doi: 10.1038/s41612-019-0077-5.
- [18] J. P. Sierra, P. A. Arias, A. M. Durán-Quesada, K. A. Tapias, S. C. Vieira, and J. A. Martínez, "The Choco low-level jet: past, present and future," *Clim. Dyn.*, vol. 56, no. 7–8, pp. 2667–2692, 2021, doi: 10.1007/s00382-020-05611-w.
- [19] H. G. Hidalgo, A. M. Durán-Quesada, J. A. Amador, and E. J. Alfaro, "The caribbean low-level jet, the inter-tropical convergence zone and precipitation patterns in the intra-Americas Sea: A proposed dynamical mechanism," *Geogr. Ann. Ser. A Phys. Geogr.*, vol. 97, no. 1, pp. 41–59, 2015, doi: 10.1111/geoa.12085.
- [20] Y. Xue, W. Higgins, and V. Kousky, "Influences of the Madden Julian Oscillations on temperature and precipitation in North America during ENSO-neutral and weak ENSO winters," in Workshop on Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2 Week to 2 Month) Time Scales, 2002, pp. 1–4. [Online]. Available: http://www.cpc.noaa.gov/products/precip/CWlink/MJO/CPCmjoindex.pdf%5Cnfile:///R:/LITERATURE/Jasmine/Xue%5Cnet %5Cnal.%5Cn(2002)%5Cn-%5CnMJO%5Cnimpact,%5CnEEOF%5Cnlag1-

10%5Cnderivation,%5Cntemperature,%5Cnprecipitation,%5CnNorth%5CnAmerica.pdf

- [21] R. D. Garreaud, "The Andes climate and weather," Adv. Geosci., vol. 22, pp. 3–11, 2009, doi: 10.5194/adgeo-22-3-2009.
- [22] C. Ilyés, V. A. J. A. Wendo, Y. F. Carpio, and P. Szűcs, "Differences and similarities between precipitation patterns of different climates," Acta Geod. Geophys., vol. 56, no. 4, pp. 781–800, 2021, doi: 10.1007/s40328-021-00360-6.
- [23] S. H. S. Herho, F. R. Fajary, and D. E. Irawan, "On the statistical learning analysis of rain gauge data over the Natura Islands Sandy," *Eartharxiv*, 2021, doi: 10.31223/X55D03.
- [24] C. Jones and L. M. V. Carvalho, "The influence of the Atlantic multidecadal oscillation on the eastern Andes low-level jet and precipitation in South America," *Clim. Atmos. Sci.*, vol. 1, no. 1, pp. 1–7, 2018, doi: 10.1038/s41612-018-0050-8.
- [25] T. L. Montini, C. Jones, and L. M. V. Carvalho, "The South American Low-Level Jet: A New Climatology, Variability, and Changes," J. Geophys. Res. Atmos., vol. 124, no. 3, pp. 1200–1218, 2019, doi: 10.1029/2018JD029634.
- [26] A. K. Rowe and R. A. Houze, "Cloud organization and growth during the transition from suppressed to active MJO conditions," J. Geophys. Res., vol. 120, pp. 10324–10350, 2015, doi: 10.1002/2014JD022948.

- [27] M. S. Alvarez, C. S. Vera, and G. N. Kiladis, "MJO modulating the activity of the leading mode of intraseasonal variability in South America," *Atmosphere (Basel).*, vol. 8, no. 12, pp. 1–7, 2017, doi: 10.3390/atmos8120232.
- [28] H. Miyahara, Y. Aono, and R. Kataoka, "Searching for the 27-day solar rotational cycle in lightning events recorded in old diaries in Kyoto from the 17th to 18th century," Ann. Geophys., vol. 35, no. 6, pp. 1195–1200, 2017, doi: 10.5194/angeo-35-1195-2017.
- [29] B. Lu, F. F. Jin, and H. L. Ren, "A Coupled Dynamic Index for ENSO Periodicity," J. Clim., vol. 31, no. 6, pp. 2361–2376, 2018, doi: 10.1175/JCLI-D-17-0466.1.
- [30] C. Canedo-Rosso, C. Uvo, and R. Brendtsson, "Intl Journal of Climatology 2018 Canedo-Rosso Precipitation variability and its relation to climate anomalies in the.pdf," Int. J. Climatol., vol. 39, pp. 2096–2107, 2018, doi: 10.1002/joc.5937.
- [31] M. Pezzopane, A. Pignalberi, and M. Pietrella, "On the influence of solar activity on the mid-latitude sporadic E layer," J. Sp. Weather Sp. Clim., vol. 5, no. A31, pp. 1–8, 2015, doi: 10.1051/swsc/2015031.
- [32] Y. Feliks, J. Small, and M. Ghil, "Global oscillatory modes in high-end climate modeling and reanalyses," *Climate Dynamics*, vol. 57, no. 11–12. pp. 3385–3411, 2021. doi: 10.1007/s00382-021-05872-z.
- [33] Y. F. Lin, J. Y. Yu, C. R. Wu, and F. Zheng, "The Footprint of the 11-Year Solar Cycle in Northeastern Pacific SSTs and Its Influence on the Central Pacific El Niño," *Geophys. Res. Lett.*, vol. 48, no. 5, pp. 1–10, 2021, doi: 10.1029/2020GL091369.
- [34] L. Zhang and T. L. Delworth, "Simulated response of the pacific decadal oscillation to climate change," *J. Clim.*, vol. 29, no. 16, pp. 5999–6018, 2016, doi: 10.1175/JCLI-D-15-0690.1.