NOTES ON THE RELATIONSHIP OF NEUROGLOBIN AND VDAC IN NEURODEGENERATIVE DISEASES.

María G. Enríquez-Mejía¹, Patricia Vieyra-Reyes^{1*}, Isaac Túnez Fiñana², Esvieta Tenorio Borroto¹

*Address correspondence to this author at the Universidad Autónoma del Estado de México, México. Km 15.5 carretera Toluca-Atlacomulco, CP. 50295 San Cayetano Morelos, Méx.; E-mail: pvieyrar@uaem.mx

ABSTRACT

Scientific and technological advances have achieved a substantial increment in life expectancy. Unfortunately, the life extension is associated with the presence of neurodegenerative diseases. Interestingly, a common cause of these pathologies is associated with the development of abnormal proteins that induce voltage-gated anionic channel (VDAC) blocking, with a subsequent decrease in their conductance, mitochondrial dysfunction and finally neuronal apoptosis. Neuroglobin, a metalloprotein with antioxidant and antiapoptotic properties can sterically prevent their blockade and partially counteract the production of reactive species, another common cause shared by neurodegenerative pathologies. Subtle mutations of neuroglobin have been documented at advanced age, therefore neuroglobin replacement therapy was conceived as a neuroprotective therapeutic tool. In this review, we discuss the most recent findings regarding the relationship neuroglobin/VDAC in Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis and Parkinson's disease. Finally, we discuss some future alternatives to study the neuroglobine and VDAC interaction.

¹Universidad Autónoma del Estado de México, México.

²Departamento de Bioquímica y Biología Molecular. Escuela de Medicina, Universidad de Córdoba, España; ³Universidad Autónoma del Estado de México, México.

Keywords: Neuroglobin, VDAC, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis.