Food-Based Intervention Strategies for Iron Deficiency Prevention †

Victoria Evlash, Olena Aksonova and Sergey Gubsky *

Department of Chemistry, Biochemistry, Microbiology and Hygiene of Nutrition, State Biotechnological University, 61051 Kharkiv, Ukraine; evlashvv@gmail.com (V.E.); eaksonova@gmail.com (O.A.)
* Correspondence: sergey.m.gubsky@gmail.com

Abstract: An urgent issue in the development of food technologies is the creation of biologically complete foods. It is well-known that deficiency of various elements has noticeable effects on human health. One of these areas is devoted to solving the problem of preventing iron deficiency states. Iron deficiency and iron deficiency anemia are common medical conditions worldwide. The analysis of statistics and the accumulation of new scientific facts about the pathological processes associated with iron deficiency provide grounds for confirming the fact that the fight against this phenomenon is an actual process. Current strategies for the prevention of this condition, one way or another related to food. The analysis of scientific publications made it possible to identify the main food-based intervention strategies: food and nutrition education with food diversification, biofortification, iron supplementation, iron fortification of certain foods and food-to-food fortification. Finally, we discuss these strategies for prevention of iron deficiency.

Keywords: iron-enriched foods; iron deficiency anemia; iron-containing supplement; functional foods; fortification

1. Introduction

Iron deficiency (ID) and iron deficiency anemia (IDA) are common medical conditions worldwide [1]. Iron deficiency is the most common and widespread nutritional disorder in the world. This disorder is a public health problem in low-income and middle-income countries [2]. An iron deficiency is seen most commonly in children, women who are menstruating or pregnant, and those eating a diet lacking in iron [3,4]. Iron deficiency is the result of a long-term negative iron balance and the disease proceeds in several stages [5]. Initially, a mild form occurs due to low iron diets or excessive bleeding. Its further progress is associated with a stage of more severe depletion of iron reserves in the body and a decrease in the number of red blood cells. This ultimately leads to IDA, a condition characterized by depleted iron reserves and a significant loss of total red blood cells. Iron deprivation from erythroblasts and other tissues occurs when total body iron reserves are low or when inflammation causes plasma iron retention, in particular due to the action of hepcidin, the main regulator of systemic iron homeostasis [6]. Anemia is defined as a low blood hemoglobin concentration. As a result, the formation of hemoglobin is disrupted, hypochromic anemia and trophic disorders in the tissues occur.

Several chronic diseases are frequently associated with iron deficiency anemia – notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease [7,8]. Iron deficiency anemia is associated with poorer performance on developmental ratings in infants and with lower scores on cognitive function tests in children and that...
iron treatment can reverse some of these impairments [9]. Recent studies have shown the impact of anemia on COVID-19 [10,11].

2. Statistical Data of Iron Deficiency

Statistical data, usually based on the results of research by the World Health Organization, indicate that ID and IDA are a significant global health problem and challenge for developing countries, including Ukraine. A more recent estimate, made in 2011 and obtained using a different methodology, it is estimated that approximately 43% of children, 38% of pregnant women, and 29% of non-pregnant women and 29% of all women of reproductive age have anemia globally, corresponding to 273 million children, 496 million non-pregnant women and 32 million pregnant women [12]. According to WHO mortality data, around 0.8 million deaths (1.5% of the total) can be attributed to iron deficiency each year, and in terms of the loss of healthy life, expressed in disability-adjusted life years (DALYs), iron-deficiency anemia results in 25 million DALYs lost (or 2.4% of the global total) [13]. Finally, according to the most recent data [14]:

- all ages anemia prevalence was 22.8% globally in 2019, a decrease from 27.0% in 1990;
- while prevalence decreased over this time, total cases of anemia increased from 1.42 billion in 1990 to 1.74 billion in 2019;
- prevalence was highest among children under five years;
- 54.1% of anemia cases were mild, 42.5% were moderate, and 3.4% were severe;
- anemia was responsible for 58.6 million DALYs in 2019.

3. Iron Deficiency Medical Condition and Its Prevention Strategies

The above statistics and the accumulation of new scientific facts about the pathological processes associated with iron deficiency provide grounds for confirming the fact that the fight against this phenomenon is an actual process. Current main food-based intervention strategies for the prevention of this condition can be presented in the form of a diagram (Figure 2) (adapted from [15–18]).

![Figure 1. Prevention of iron deficiency: intervention strategies.](image)

Almost all of the above types of interventions have a single goal associated with improving iron intake and its bioavailability.

3.1. Food and Nutrition Education with Food Diversification

Thus, food diversification in combination with nutritional training achieves this goal of increased intake of iron rich foods, especially flesh foods [16]. This is especially true for the consumption of fruits and vegetables rich in ascorbic acid content. This component is known to help improve iron absorption. At the same time, there is an emphasis on reducing the consumption of foods that inhibit this process, such as coffee and tea (due to tannins found in black tea and coffee inhibit iron absorption). Inositol hexaphosphate (phytic acid) also prevents the absorption of iron. To avoid the influence of this factor, a different approach is used—enzymatic and non-enzymatic methods of processing products, especially of plant origin. Enzymatic methods such as sprouting and fermentation promote
the enzymatic hydrolysis of phytic acid in whole grain cereals and legumes by increasing the activity of endogenous or exogenous phytase enzymes. At the same time, non-enzymatic methods such as heat treatment, soaking and grinding are used to reduce the phytic acid content of plant foods.

3.2. Biofortification

In addition to consuming foods traditionally high in iron, there are now other opportunities to increase iron content in previously low iron items. This can be achieved with the help of biofortification, which has a variety of methods aimed at enriching crops with vital macro- and microelements using biotechnological processes. The goal of this approach is to enhance the nutritional value of any food crop [19]. In the implementation of this goal, there are three main approaches to the biofortification of agricultural crops: conventional, agronomic, and transgenic biofortification [20].

3.3. Iron Supplementation

Iron supplementation is a term used to describe the provision of relatively large doses of iron. This is usually a specialty product in the form of pills, capsules or syrups. The main advantage of this type of intervention is the ability to provide an optimal amount of a specific nutrient or nutrients, in a highly absorbable form, and is often the fastest way to control deficiency in individuals or population groups that have been identified as being deficient [13].

3.4. Iron Fortification of Certain Foods

Food fortification means adding micronutrients to processed foods. Iron fortification is the practice of deliberately increasing the amount of iron in foods, so as to improve the nutritional quality of the food supply and provide a public health benefit with minimal risk to health. Food fortification has a long history of use in industrialized countries for the successful control of deficiencies of various micronutrients [21]. In many situations, this strategy can lead to a relatively rapid improvement in the micronutrient status of the population and at a very reasonable cost. Therefore, this mode of intervention should be considered as a viable food processing technology in cases where existing food supplies and limited access do not provide adequate levels of appropriate nutrients in the diet, in particular iron [13].

However, a number of requirements must be met: fortified foods must be consumed in sufficient quantities by a significant proportion of target individuals in the population; in the fortification process, fortifiers should be used that are well absorbed and do not affect the sensory properties of products [13]. The first requirement is related to the so-called the Recommended Dietary Allowance (RDA). RDA for all age groups of men and postmenopausal women is 8 mg/day; the RDA for premenopausal women is 18 mg/day. The median dietary intake of iron is approximately 16 to 18 mg/day for men and 12 mg/day for women. The Tolerable Upper Intake Level (UL) for adults is 45 mg/day of iron, a level based on gastrointestinal distress as an adverse effect [22]. Recommended composition of dietary supplements to complement fortified foods for iron 10 mg [13].

When considering the second requirement, it should be borne in mind that a wide variety of iron compounds, mainly in inorganic form, are currently used as food fortificants. These can be broadly divided into three categories: water soluble; poorly water soluble but soluble in dilute acid; water insoluble and poorly soluble in dilute acid [13]. According to the author [23], given the proven effectiveness, such a division is possible into four categories. The first three categories coincide with the previous classification by solubility: (1) iron sulfate and iron gluconate are water-soluble compounds with good bioavailability; (2) iron fumarate has good bioavailability, but poorly soluble in water; (3) iron pyrophosphate is insoluble in water and does not dissolve completely in gastric juice. And the fourth category is the compound of ethylenediaminetetraacetic acid with sodium and
iron and iron bisglycinate, which are soluble iron chelates. Iron absorption from chelates when added to foods such as cereals, legumes, or milk is higher than from soluble compounds [23]. The choice of these iron components pursues the following main objectives of fortification: increasing the nutritional value of food due to the introduction of iron compounds with better bioavailability; limiting the interaction of iron with components of the food matrix; minimization of unwanted organoleptic changes in the product. However, when used in the fortification process, some iron compounds (for example, ferrous sulfate or gluconate) exhibit significant organoleptic deficiencies. The fortified food product has a metallic aftertaste, unacceptable flavor as a result of the oxidation-mediated rancidity of fats and undesirable color changes resulting from interactions with anthocyanin’s, flavonoids, and tannins [24]. In addition, degradation of vitamins can occur, which are important for iron absorption and utilization [16].

Another fortificant of iron in food can be heme iron [25]. This study describes the development of a technology for the production of a heme iron-rich dietary supplement from the slaughter blood, as well as novel anti-anemic foods. It was noted above that heme iron is an important dietary source of iron because it is absorbed more efficiently than nonheme iron and also enhances the absorption of nonheme iron. Considering that heme iron in animal tissues is formed mainly from hemoglobin and myoglobin, the main fortifying agent is the heme iron polypeptide. It is a concentrate of heme iron obtained as a result of the hydrolysis of hemoglobin with a nonspecific protease and the separation of globin peptones from the heme fraction. The heme iron polypeptide being in the form of a powder can be used directly in the formulations of various food products, such as chocolate filling for confectionery products, jams, baby food in cans, meat products, pies, sweets, dairy products, desserts, bakery products, drinks etc. [26].

Important step is the selection of products suitable for fortification. It is important to regularly consume them in certain proportions and to be economically available for the broad masses of the population, including target groups [23]. The right combination of iron form and food good vehicles, as well as the dietary context of consumption, are critical [27]. In this matter, the regularity of consumption of fortified food products in certain proportions and their economic accessibility to the broad masses of the population, including target groups, is important [28]. The consumer choice of such products should not be influenced by the fortification process, i.e., it must not lead to undesirable changes in color, taste and appearance [29]. Bakery products and cereal flours are good vehicles for the delivery of food [30–32]. Another example is foods for specific populations. Such as formula and cereal weaning foods for infants and young children, breakfast cereals, chocolate drink powders and beverages for older children and older children and adolescents [33].

3.5. Food-to-Food Fortification

Food-to-food fortification is an emerging food-based strategy that can complement current strategies [18]. This strategy was defined by the authors as the addition of micronutrient-dense foods to a recipe (household level) or food formulation (food industry level), or the replacement of micronutrient-poor foods for foods with a higher content of them to substantially increase the amount of bioavailable micronutrient/s, with the aim of improving the micronutrient status of populations. Iron-rich plant-based foods are used as fortifiers in this approach. However, the small number of studies does not allow us to make a final conclusion about the effectiveness of this approach.

4. Conclusions

This mini-review presented the applications of main food-based intervention strategies to solve the problem with iron deficiency medical condition.
Author Contributions: Conceptualization, V.E.; O.A. and S.G.; methodology, O.A. and S.G.; formal analysis, S.G.; writing—original draft preparation, S.G.; writing—review and editing, O.A. and S.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References


