

Better solutions to protect olive oil quality and authenticity

A simplified SPE-GC-FID method for detection of adulteration of olive oil with sunflower oil

Prof. Paolo Lucci, Udine/IT, E. Valli, Bologna/IT, A. Bendini, Bologna/IT, W. Moreda, Sevilla/ES, S. Moret, Udine/IT, T. Gallina Toschi, Bologna/IT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 635690.

OLEUMPROJECT.EU | #OLEUM2020

Introduction	Work Aim	State of Art	Method Development & Validation	Method Application	Conclusions

Desmethylsterol composition (% total sterols)

- Cholesterol			<u><</u> 0.5
- Brassicasterol			<u><</u> 0.1
- Campesterol			\leq 4.0
- Stigmasterol		< camp	esterol in edible oils
- Delta-7-stigmastenol			≤ 0.5
- Apparent beta-sitosterol:			
beta-sitosterol +		٦	
delta-5-avenasterol +			
delta-5-23-stigmastadienol +		>	\geq 93.0
clerosterol + sitostanol +			
delta 5-24-stigmastadienol		J	
Total sterol content	(mg/kg)		
Virgin olive oils		٦	
Refined olive oil		}	>1000
Olive oil (ROO+VOOs)		J	—

OLEUMPROJECT.EU | #OLEUM2020

Development of an easy and "fast" method for the identification of both free and esterified minor compounds, including sterols

Foods 2021, 10, 1260. https://doi.org/10.3390/foods10061260

OLEUMPROJECT.EU | #OLEUM2020

Repeatability values for the optimized SPE-GC-FID method

Sample	Free Minor Compounds* (mg/kg)	RSDr (%)	Esterified Minor Compounds [∓] (mg/kg)	RSDr (%)
Extra virgin olive oil	1840 ± 110	5.9	820 ± 40	4.6
Refined olive pomace oil	2130 ± 120	5.9	1400 ± 100	7.2
Refined sunflower oil	2400 ± 100	4.2	2460 ± 180	7.5

Results are expressed as average of free and esterified HMC content (mg/kg) of 6 replicates ± repeatability standard deviation. RSDr = repeatability relative standard deviation.

*Sum of resolved/unresolved peaks of cholesterol, brassicasterol, campesterol, stigmasterol, delta-7-stigmastenol, clerosterol, beta-sitosterol, delta-5avenasterol, cycloartenol, 24-methylencycloartenol, delta-5-23-stigmastadienol, sitostanol, delta-5-24-stigmastadienol, citrostadienol [¬]Sum of resolved/unresolved peaks of campesteryl C18:1, sitosteryl C18:1, cicloartenyl C18:1, delta-7-stigmasteryl C18, delta-7-avenasteryl C18, 24 methylen cycloartenyl C18:1, citrostadienyl C18:1

Foods 2021, 10, 1260. https://doi.org/10.3390/foods10061260

Conclusions

Introduction

Real Samples

Oleum	Minor Compounds					
	Sample		Free * (mg/kg)	Esterified [⊤] (mg/kg)	Total (mg/kg)	Free/Esterified Ratio
, i i i i i i i i i i i i i i i i i i i	-	1a-SP	1970	770	2740	2.6
		2a-SP	1860	460	2320	4.0
		3a-GR	2390	970	3360	2.5
	ls	4a-GR	2090	460	2550	4.5
Danga	01	5a-GR	1680	360	2040	4.7
Range	Ne	6a-IT	2000	470	2470	4.3
Free 1679-2388 mg/Kg	oli	7a-GR	2040	470	2510	4.3
Esterified 357-974 mg/Kg 🧮	Ë.	8a-GR	2030	560	2590	4.0
	ir Bi	9a-GR	1940	490	2430	3.9
	N R	10a-GR	1980	780	2760	2.5
	tt.	11a-GR	1920	490	2410	3.9
	E	12a-SP	2320	770	3090	3.0
		13a-IT	1790	460	2250	3.9
		14a-PR	1980	900	2880	2.2
		15a-PR	2210	770	2980	2.9
Rango	1	1b	2320	2980	5300	0.8
Free 2278-3030 mg/Kg	A.	2b	3030	2800	5830	1.1
	flo ils	3b	2340	2730	5070	0.9
sterified 2682-2798 mg/Kg	0 Un	4b	2530	2700	5230	0.9
	<u>م</u>	5b	2310	2660	4970	0.9

Results are expressed as average of free and esterified HMC content (mg/kg) of 3 replicates. Country of origin for EVOO samples: SP = Spain; GR = Greece; IT = Italy; PR = Portugal. * Sum of cholesterol, brassicasterol, campesterol, stigmasterol, Δ -7-stigmastenol, clerosterol, β -sitosterol, Δ -5-avenasterol, cycloartenol, 24-methylencycloartenol, Δ -5-23-stigmastadienol, sitostanol, Δ -5-24-stigmastadienol, and citrostadienol. ^TSum of campesteryl C18:1, sitosteryl C18:1, cicloartenyl C18:1, Δ -7-stigmasteryl C18, Δ -7-avenasteryl C18, 24 methylen cycloartenyl C18:1, and citrostadienyl C18:1. Foods **2021**, 10, 1260. https://doi.org/10.3390/foods10061260

EVOO containing different percentages of RSO

Esterified minor compounds Expansion of the esterified minor compounds Pure EVOO peak group 2% RSO Pure EVOO 5% RSO 2% RSO 5% RSO 10% RSO 10% RSO 15% RSO 15% RSO 20% RSO 20% RSO

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 min

Foods 2021, 10, 1260. https://doi.org/10.3390/foods10061260

Oleum

Free and esterified HMC levels of pure EVOO containing different percentages of RSO

		Free minor Compounds *		Esterified Minor		
_		Theoretical Level (mg/kg)	Experimental Level (mg/kg)	Theoretical Level (mg/kg)	Experimental Level (mg/kg)	Free/Esterified Ratio
-	EVOO		1680		360	4.7
	2	1690	1690	410	410	4.1
	5	1710	1760	480	460	3.8
%SO in EVOO	10	1740	1750	600	630	2.7
	15	1780	1740	720	730	2.4
	20	1820	1730	840	850	2.0

Results are expressed as average of free and esterified HMC content (mg/Kg) of 3 replicates. * Sum of cholesterol, brassicasterol, campesterol, stigmasterol, Δ -7-stigmastenol, clerosterol, β -sitosterol, Δ -5-avenasterol, cycloartenol, 24-methylencycloartenol, Δ -5-23-stigmastadienol, sitostanol, Δ -5-24-stigmastadienol, and citrostadienol. ^T Sum of campesteryl C18:1, sitosteryl C18:1, cicloartenyl C18:1, Δ -7-stigmasteryl C18, Δ -7-avenasteryl C18, 24 methylen cycloartenyl C18:1, and citrostadienyl C18:1.

Foods 2021, 10, 1260. https://doi.org/10.3390/foods10061260

OLEUMPROJECT.EU | #OLEUM2020 15

Introduction

Work Aim

Method

Development

& Validation

Conclusions

Free and esterified HMC levels changes during refining process

	Free minor Compounds *	Esterified Minor Compounds ^{T}	
	mg/kg	mg/kg	Free/Esterified Katio
Sunflower oil			
Crude	2990	2050	1.4
Bleached	1690	2090	0.8
Deodorized	1470	1920	0.7
Grape seeds oil			
Crude	2710	1260	2.1
Bleached	1460	1250	1.1
Deodorized	1400	1130	1.2
Corn oil			
Crude	5760	5710	1.0
Bleached	3790	5030	0.7
Deodorized	3220	4760	0,6

Results are expressed as average of free and esterified HMC content (mg/Kg) of 3 replicates. * Sum of cholesterol, brassicasterol, campesterol, stigmasterol, Δ -7-stigmastenol, clerosterol, β -sitosterol, Δ -5-avenasterol, cycloartenol, 24-methylencycloartenol, Δ -5-23-stigmastadienol, sitostanol, Δ -5-24-stigmastadienol, and citrostadienol. [†] Sum of campesteryl C18:1, sitosteryl C18:1, cicloartenyl C18:1, Δ -7-stigmasteryl C18, Δ -7-avenasteryl C18, 24 methylen cycloartenyl C18:1, and citrostadienyl C18:1.

The method herein proposed is not intended to replace total sterols method (ISO 12228, COI/T.20/Doc. No. 10). The two methods are completely different from both analytical point of view and final purpose as well the information they may provide.

The two methods could be complementary and used together to obtain a higher degree of information regarding the nature of the oil sample and therefore to reinforce analytical methods available for the prevention of fraud.

This method determines the free and esterified minor components (free fatty alcohols, free and esterified sterols, free and esterified triterpenic alcohols, sterenes, and free and esterified tocopherols) of olive oils and seed oils and can be utilized as screening tool to detect adulteration by seed oils.

The method proposed in this study has the advantages, compared to the methodologies already proposed in the literature, of minimizing sample manipulation, volume of solvents and reagents, and time needed for the procedure.

In addition, the proposed offline SPE-GC-FID methodology requires the use of simple instrumentation

The method has been successfully in-house validated and showed to be able to detect small increase of esterified HMC due to illegal addition of SFO to EVOO.

Better solutions to protect olive oil quality and authenticity

A simplified SPE-GC-FID method for detection of adulteration of olive oil with sunflower oil

Prof. Paolo Lucci, Udine/IT, E. Valli, Bologna/IT, A. Bendini, Bologna/IT, W. Moreda, Sevilla/ES, S. Moret, Udine/IT, T. Gallina Toschi, Bologna/IT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 635690.