Reusing food waste: Ascorbic acid extraction from orange peel using ultrasound-assisted extraction and natural deep eutectic solvents.

Clara Gómez-Urios¹, Inés Mbuy¹, Ana Frígola¹, María José Esteve¹, Jesús Blesa¹, Daniel López-Malo²

¹ Nutrition and Food Science Area. Faculty of Pharmacy. University of Valencia. Av. Vicent Andrés Estellés s/n. 46100. Burjassot, València, Spain
² Faculty of Health Sciences, European University of Valencia, Valencia, Spain

PID-2019-111331RB-I00/AEI/10.13039/501100011033
Introduction

USE OR REUSE THE WASTE

FOOD INDUSTRY
Introduction

Use or reuse the waste food industry

BIOACTIVE COMPOUNDS

Food Industry

Use or reuse the waste
Introduction

USE OR REUSE THE WASTE FOOD INDUSTRY

BIOACTIVE COMPOUNDS

FOOD INDUSTRY

USE OR REUSE THE WASTE
Introduction

Ascorbic acid

- Enzyme cofactor for biochemical reactions
- Collagen formation
- Maintain the normal function of immune system
- Protect from oxidative stress
- Protective role against cardiovascular diseases

Ascorbic acid is a bioactive compound found in fruits and vegetables, offering various health benefits.
Introduction

Use or Reuse the Waste

Food Industry

Ultrasound-Assisted Extraction

BIOACTIVE COMPOUNDS

Ascorbic acid

Natural Deep Eutectic Solvents

- Eutectic mixtures
- Low melting point
- Physicochemical properties
Materials and Methods

Malic acid:L-Proline
Lactic acid:Glucose
Malic acid:Glucose
Betaine:Malic acid
Choline chloride:Lactic acid
Choline chloride:L-proline:Malic Acid

Molar Ratio → Mixed → 60-80°C → + H₂O → NADES (Transparent liquid)
Materials and Methods

UAE of ascorbic acid

- Stablish extraction time: 5, 10, 15 min
- Stablish extraction power: 100, 200, 400W
- Stablish post-treatment stirring time: 0, 20, 30, 45 min
Materials and Methods

Determination of ascorbic acid by HPLC-UV/VIS

2 ml sample

1 ml Acetic acid-HPO₃

UAE: Ultrasound-assisted extraction

MilliQ Water/Formic Acid (95:5)

Acetonitrile/phase A (60:40)

Ascorbic acid calibration curve

mg AA/100ml extract

Establish extraction time: 5, 10, 15 min

Establish extraction power: 100, 200, 400W

Establish post-treatment stirring time: 0, 20, 30, 45 min
Results and Discussion

<table>
<thead>
<tr>
<th>NADES</th>
<th>% water</th>
<th>Power (W)</th>
<th>Time (min)</th>
<th>Stirring (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADES</td>
<td>25</td>
<td>100</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

EtOH 50% (v/v) as a control
Results and Discussion

<table>
<thead>
<tr>
<th>NADES</th>
<th>% water</th>
<th>Power (W)</th>
<th>Time (min)</th>
<th>Stirring (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADES</td>
<td>25</td>
<td>100</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

EtOH 50% (v/v) as a control

L-proline: malic acid

- 7.44 mg/100 ml

Malic acid: glucose

- 11.76 mg/100 ml
Results and Discussion

<table>
<thead>
<tr>
<th>NADES</th>
<th>% water</th>
<th>Power (W)</th>
<th>Time (min)</th>
<th>Stirring (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADES</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **EtOH 50% (v/v) as a control**

Calibration curve

- Calibration curve: $R = 0.999$

Malic acid: glucose

- 11.76 mg/100 ml

L-proline: malic acid

- 7.44 mg/100 ml

ChChl.LA

- 4.45

ChChl.LP.MA

- 4.20

Bet:MA

- 5.25

EtOH

- 6.45

LA.Glu

- 3.82

LP.MA

- 7.97

MA.Glu

- 13.99

3,82 7,97 13,99 4,45 4,20 5,25 6,45

5 mg/100 ml
Results and Discussion

<table>
<thead>
<tr>
<th>NADES</th>
<th>% water</th>
<th>Power (W)</th>
<th>Time (min)</th>
<th>Stirring (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADES</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EtOH 50% (v/v) as a control

Calibration curve

L-proline: malic acid

Malic acid: glucose

Calibration curve

Ascobic Acid

1.2750.300

R = 0.999

<table>
<thead>
<tr>
<th>LA.Glu</th>
<th>LP.MA</th>
<th>MA.Glu</th>
<th>ChChl.LA</th>
<th>ChChl.LP.MA</th>
<th>Bet:MA</th>
<th>EtOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.82</td>
<td>7.97</td>
<td>13.99</td>
<td>4.45</td>
<td>4.20</td>
<td>5.25</td>
<td>6.45</td>
</tr>
</tbody>
</table>

LA.Glu

LP.MA

MA.Glu

ChChl.LA

ChChl.LP.MA

Bet:MA

EtOH

Maíc acid: glucose

Malic: glucose

L-proline: malic acid

Bet:ma
Conclusions

• The extraction efficiency of MA:Glu is higher than all of the NADES studied
• Two of the studied NADES extracted more AA than EtOH 50% from orange peel.
• NADES could be a better solvents than EtOH for the extraction of AA from orange peel
Reusing food waste: Ascorbic acid extraction from orange peel using ultrasound-assisted extraction and natural deep eutectic solvents.

Clara Gómez-Urios¹, Inés Mbuy¹, Ana Frígola¹, María José Esteve¹, Jesús Blesa¹, Daniel López-Malo²

¹ Nutrition and Food Science Area. Faculty of Pharmacy. University of Valencia. Av. Vicent Andrés Estellés s/n. 46100. Burjassot, València, Spain
² Faculty of Health Sciences, European University of Valencia, Valencia, Spain