

abstract

Hydrophobic and Hydrophilic Deep Eutectic Solvents to Obtain Green Extracts with Biological Activity ⁺

Adriana Viñas-Ospino ^{1,*}, Manuela Panić ², Ivana Radojčić-Redovniković ², Jesús Blesa ¹, Ana Frígola ¹, María José Esteve ¹ and Daniel López-Malo ³

- Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain; jesus.blesa@uv.es (J.B.); ana.frigola@uv.es (A.F.); maria.jose.esteve@uv.es (M.J.E.)
- ² Laboratory for Cell Culture Technology and Biotransformations, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti Street 6, 10000 Zagreb, Croatia; mpanic@pbf.hr (M.P.); irredovnikovic@pbf.hr (I.R.-R.)
- ⁹ Department of Nursery, European University of Valencia, Paseo de La Alameda, 7, 46010 València, Valencia, Spain; dalomalo@gmail.com
- * Correspondence: aviasos@alumni.uv.es
- + Presented at the 3rd International Electronic Conference on Foods: Food, Microbiome, and Health A Celebration of the 10th Anniversary of Foods' Impact on Our Wellbeing; Available online: https://foods2022.sciforum.net.

Abstract: Now a days food industry is focusing on reutilization of fruit by-products rich in bioactive compounds as carotenoids. These valuable ingredients could be extracted to formulate functional food products. Deep Eutectic Solvents (DES) are a new generation of solvents that comply with the requirements for green extractions and can successfully replace other organic solvents. The aim of the present study was to select the most promising DES for carotenoid extraction from orange peel (OP) and obtain green extracts with biological activity. In order to reduce time and energy the software COSMOtherm was used for the screening of 68 DES to provide the optimal solvent for carotenoid extraction. The results from the software were validated experimentally with the most suitable and unsuitable solvents. OP was obtained from orange fruits (Citrus sinensis, Navel cultivar). Three hydrophobic DES were prepared Menthol:Camphor (Me:Cam), Menthol:Eucalyptol (Me:Eu), Lauric Acid:Octanoic acid (C12:C8) and two hydrophilic Proline:Malic acid (Pro:MA) and Choline chloride:Urea (ChChl:U). Extractions were performed with 1 g of milled OP using different DES (1:10 w/v) for 30 min with 50 W of ultrasound power at 45 °C. The obtained extracts were characterized by total carotenoid content (TC) determined spectrophotometrically and the biological activity was evaluated in vitro by an antiproliferative assay in tumor cells (HeLa) using MTS reactive. The extracts obtained with hydrophobic DES showed the highest values of total carotenoids, and not significative difference (p > 0.05) was found between Me:Cam (163.5 ± 1.1 mg/100 g_{fw}), Me:EU (168.7 \pm 1.6 mg/100 gfw) and C12:C8 (153.1 \pm 7.1 mg/100 gfw). The in vitro assay showed an antiproliferative effect of Me:Cam extract on tumor HeLa cells with 26.7% of cell viability. The whole formulation (DES and bioactive compound) could be included in final products without any additional purifying steps and can enhanced the bioactivity of food products.

Keywords: carotenoids; deep eutectic solvents; orange by-products; COSMOtherm; biological activity

Citation: Viñas-Ospino, A.; Panić, M.; Radojčić-Redovniković, I.; Blesa, J.; Frígola, A.; Esteve, M.J.; López-Malo, D. Hydrophobic and Hydrophilic Deep Eutectic Solvents to Obtain Green Extracts with Biological Activity. *Biol. Life Sci. Forum* 2022, 2, x. https://doi.org/10.3390/xxxxx Published: date: 1 October 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).