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Abstract: From a structural point of view, hydrocolloids are characterized as hydrophilic biopoly-

mers with high molecular weight. Hydrocolloids are widely used in food industry, mainly as thick-

eners, gelling agents, stabilizers of foams and emulsions, and inhibitors of ice and sugar crystals. 

Additionally, hydrocolloids are being increasingly used as fat replacers, aiming to produce low-

calorie foods. Besides these important functional properties in different food products, hydrocol-

loids are being progressively recognized for their diverse biological properties, including anticoag-

ulant, antithrombic, hypocholesterolemic, antioxidant, antiviral, antitumor, immunomodulatory ef-

fects. Also, some studies have reported that these biopolymers have beneficial effects against a sig-

nificant number of dermatological problems. Regarding antiviral properties, some hydrocolloids, 

such as sulfated polysaccharides, exhibit unique structures that exert these effects. This study aims 

to describe the corresponding underlying mechanisms of this bioactivity. Special attention will be 

given to the way hydrocolloids may obstruct different phases of the viral life cycle (attachment, 

penetration, uncoating, biosynthesis, viral assembly, and release) by directly inactivating virions 

before infection or by inhibiting its replication inside the host cell. The presented information might 

represent a potential contribution to the discovery and development of new antiviral drugs. 

 

 

1. Occurrence of Sulfated Polysaccharides in Algal Species 

1.1. Red Macroalgae 

In red macroalgae, sulfated galactans stand out as the major polysaccharides. From 

a structural point of view, these compounds are characterized by their typical linear back-

bone with alternating units of β-D-galactopyranose (with the glycosidic bond in carbon 3) 

and α-galactopyranose (with the glycosidic bond in carbon 4). Sulfated galactans are gen-

erally divided in agarans, in which the monomeric unit is α-L-galactose, and carrageenans, 

which, in turn, are formed by linear chains of α-D-galactose (Al-Alawi et al., 2011). 

In red algae, carrageenan is located in the outer cell wall and in the intracellular ma-

trix, and may correspond to as much as 30-70% of their dry weight. In what concerns its 

metabolic pathway, carrageenan is initially produced in the Golgi apparatus and later 

sulfated by sulfotransferases in the cell wall (Garcia-Jimenez et al., 2020). 

The carrageenans with highest commercial relevance, are kappa (κ), naturally abun-

dant, for instance, in Kappaphycus alvarezii and several Eucheuma species (Rudke et al., 

2020); iota (ι), found in high percentages in Eucheuma denticulatum (Jönsson et al., 2020) 

and lambda (λ), abundant, among other red algae, in Gigartina skottsbergii and Chondrus 

crispus (Zhu et al., 2018; Muthukumar et al., 2021). 

Aside from carrageenan, agar is also common in red macroalgae. Agar comprises two 

polysaccharides, agarose and agaropectin, and it is particularly abundant in genera Gelid-

ium and Gracilaria. From the structural point of view, agar contains alternating sequences 

of 1→3-β-D-galactopyranose (which can be substituted by sulfate esters, pyruvic acid 

Citation: Pereira, C.S.G.P.; Prieto, 

M.A.; Oliveira, M.B.P.P. Algal-De-

rived Hydrocolloids with Potential 

Antiviral Activity: A Mechanistic Ap-

proach. Biol. Life Sci. Forum 2022, 2, x. 

https://doi.org/10.3390/xxxxx 

Published: 1 October 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: ©  2022 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Biol. Life Sci. Forum 2022, 2, x 2 of 4 
 

 

acetals, or methoxy groups) and 1→4-α-L-galactopyranose or 3→6-α-L-galactopyranose 

(Usov, 2011; Lee et al., 2017). 

1.2. Green Macroalgae 

Ulvan is the most common polysaccharide in the cell walls of green seaweed, being 

most commonly found in genera such as Ulva, Gayralia, and Monostroma. Despite repre-

senting a less exuberant percentage than carrageenan in red macroalgae, ulvan can reach 

8-29% of the algal dry weight (Lahaye and Robic, 2007). It is mainly constituted by L-

rhamnose (5.0-92.2%), D-glucuronic acid (2.6-52.0%), D-xylose (0.0-38.0%), L-iduronic 

acid (0.6-15.3%), and sulfate (Kim, 2015). These monomeric units are typically linked by 

α- and β-(1→4) bonds, forming repeating disaccharide units, such as aldobiuronic acids 

(or ulvanobiuronic acid) and aldobioses (or ulvanobioses) (Kidgell et al., 2019). 

1.3. Brown Macroalgae 

Among brown macroalgae, fucoidan is acknowledged as the major sulfated polysac-

charide, often reaching percentages as high as 30% of its dry weight. Fucoidan is charac-

terized by a backbone of α-(1→3)-L-fucopyranosyl residues with α-(1→3) or α-(1→4) gly-

cosidic bonds positions (Yuguchi et al., 2016). Nonetheless, fucoidan is classified as an 

heterogenous polysaccharide, since the pyranose unit may be substituted by sulfate, ace-

tate, or glycosyl (e.g., glucuronic acid) units, and, less frequently, other monosaccharides 

(e.g., D-xylose, D-galactose, D-mannose, or uronic acids) (Ale et al., 2011). 

Fucus evanescens and Ascophyllum nodosum are typical sources of fucoidan (Yuguchi 

et al., 2016). 

2. Antiviral Activity of Algae-Derived of Sulfated Polysaccharides 

Owing their unique chemical structures, algae sulfated polysaccharides may exert 

different biological activities. 

In the specific case of their potential antiviral effects, these compounds may block 

different phases of the viral life cycle, either by direct inactivation of virions before infec-

tion, or by inhibiting its replication inside the host cell. Accordingly, a significant number 

of antiviral drugs has been developed based in the capacity of algae polysaccharides to 

inhibit the primary stages (attachment, penetration, uncoating, biosynthesis, viral assem-

bly, and release) of virus life cycle (Wang et al., 2012). 

2.1. Antiviral Activity of Red Macroalgae Sulfated Polysaccharides 

Probably due to its higher natural occurrence, carrageenan is the most studied sul-

fated polysaccharide in human clinical trials designed to evaluate its potential effect 

against various viral diseases (Perino et al., 2019). Kappa-(κ-)carrageenan, particularly 

low-molecular weight forms, showed capacity to inhibit viral replication, either by block-

ing adsorption to the surface, as well as inhibiting protein expression (Wang et al., 2011). 

This action was reported in different viral species, such as influenza virus (Wang et al., 

2011), SARS-CoV-2 (Schütz et al., 2021), HSV-2 and HPV16 (Buck et al., 2006). 

On the other hand, lambda-(λ-)carrageenan, inhibits viral internalization by specifi-

cally targeting cell surface receptors in which virus attachment occurs, or through binding 

to viral envelope proteins. This effect has been reported in rabies virus infection (Luo et 

al., 2015), influenza, SARS-CoV-2 (Jang et al., 2021), different herpes virus (Jang et al., 

2021), and dengue virus (Talarico and Damonte, 2007). 

Iota-(ι-)carrageenan’s antiviral activity has also been well documented, especially 

against respiratory viruses (Morokutti-Kurz et al., 2017). Likewise, it seems to contribute 

to neutralize SARS-CoV-2, particularly because of positively charged regions on the gly-

coprotein envelope and protein aggregation in host cells surface (Hassanzadeh et al., 2020). 
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Additionally, galactans show good antiviral activity against herpes simplex virus 

(HSV), dengue virus, hepatitis A virus and HIV (preventing the interaction between HIV 

gp120 and the CD4+ T-cell receptor) (Ahmadi et al., 2015). 

2.2. Antiviral Activity of Green Macroalgae Sulfated Polysaccharides 

Ulvan, the major sulfated polysaccharide in green macroalgae, was reported for its 

in vitro and in vivo antiviral activity (Hardouin et al., 2016), for instance by preventing 

the infection and replication of vesicular stomatitis virus (Chi et al., 2016), reducing the 

formation of syncytia in measles virus (Morán-Santibañez et al., 2016), inhibiting cell-to-

cell fusion in Newcastle disease virus (Aguilar-Briseño et al., 2015), or downregulating 

protein synthesis in HSV (Lopes et al., 2017). 

2.3. Antiviral Activity of Sulfated Brown Macroalgae Polysaccharides 

Due to its abundance in these algae species, fucoidan is the most commonly studied 

polysaccharide, having already been reported as being effective against several RNA and 

DNA viruses, including HIV (by reducing the p24 antigen and reverse transcriptase lev-

els), HSV, influenza A virus (by blocking neuraminidase activity), and SARS-CoV-2, 

among others (Dinesh et al. 2016; Jiao et al., 2012). 

3. Conclusion 

Comparing the algae species referred herein, it seems evident that red and brown 

algae have higher potential as sources of sulfated polysaccharides, which may justify that 

these species are studied in higher extension. Independently of algae source, sulfated pol-

ysaccharides showed activity against various DNA and RNA viruses. The associated an-

tiviral mechanisms as well as corresponding effectiveness appear to highly dependent on 

virus species and host cell type. Nevertheless, algae-derived sulfated polysaccharides 

seem to have a validated antiviral activity, which, conjugated with their high availability, 

low production costs, broad-spectrum antiviral activities, and unique antiviral mecha-

nisms, suggest that their exploitation for this purpose may be particularly attractive. 
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