Enzymatic Synthesis

of Flavours and Fragrances,

Antioxidants and Antimicrobials

on the Example of Benzyl

Alcohol and its Selected

Derivatives

Bartłomiej Zieniuk, Karina Jasińska, Katarzyna Wierzchowska, Agata Fabiszewska

Warsaw University of Life Sciences

The 3rd international electronic conference on Foods: Food, Microbiome, and Health - A Celebration of the 10th Anniversary of Foods' Impact on our Wellbeing, 1–15 Oct 2022

The aim of the work

The aim of the work was the enzymatic synthesis of flavours and fragrances, antioxidants and antimicrobials with the use of benzyl alcohol, and its selected derivatives, namely 2-hydroxybenzyl, vl, 4-methoxybenzyl rdroxty benz (anisyl), 4-hydroxy-3-methoxybenzyl (vanillyl), 4-nitrobenzyl, and 3,4-(methylenedioxy)benzyl (piperonyl) alcohols via transesterification with vinyl acetate.

Column Chromatography and ¹H NMR of the Obtained Esters

Ï

Evaluation of Antioxidant Activity by Means of the DPPH assay

Evaluation of Antimicrobial Activity with the Disc Diffusion Method

Enzymatic Synthesis of Acetate Esters of Benzyl Alcohol and its Derivatives

Spectra were recorded on Bruker AVANCE 300 MHz spectrometer (Bruker, Billerica, MA, USA) with CDCl₃ as a solvent. Proton chemical shifts are reported below in ppm (δ) and were relative to tetramethylsilane (TMS) as an internal standard.

Benzyl acetate: ¹H NMR (300 MHz, CDCl₃): δ 2.10 (3H, s), 5.11 (2H, s), 7.28 − 7.44 (5H, m)
2-Hydroxybenzyl acetate: ¹H NMR (300 MHz, CDCl₃): δ 2.14 (3H, s), 5.15 (2H, s), 6.88 − 7.02 (2H, m), 7.24 − 7.37 (2H, m), 7.78 (1H, s)
4-Hydroxybenzyl acetate: ¹H NMR (300 MHz, CDCl₃): δ 2.11 (3H, s), 5.06 (2H, s), 5.16 (1H, s), 6.78 − 6.91 (2H, m), 7.20 − 7.37 (2H, m)
4-Methoxybenzyl acetate: ¹H NMR (300 MHz, CDCl₃): δ 2.10 (3H, s), 3.83 (3H, s), 5.07 (2H, s), 6.86 − 6.97 (2H, m), 7.27 − 7.38 (2H, m)
Vanillyl acetate: ¹H NMR (300 MHz, CDCl₃): δ 2.11 (3H, s), 3.92 (3H, s), 5.05 (2H, s), 5.72 (1H, s), 6.89 − 6.91 (3H, m)
4-Nitrobenzyl acetate: ¹H NMR (300 MHz, CDCl₃): δ 2.16 (3H, s), 5.20 (2H, s), 7.47 − 7.57 (2H, m), 8.18 − 8.28 (2H, m)

Table 1. Flavouring esters permitted for use in food with benzyl alcohol moiety.

	CAS ^a Number	JECFA ^b Number	CoE ^c Number	FEMA ^d Number	Odour ^e	Flavour ^e
Benzyl acetate	140-11-4	23	2040	2135	sweet, floral, fruity, jasmin, fresh	fruity, sweet, with balsamic and jasmin floral undernotes
2-Hydroxybenzyl acetate	6161-96-2	-	-	-	-	-
4-Hydroxybenzyl acetate	3233-32-7	-	-	-	-	-
4-Methoxybenzyl acetate	104-21-2	873	209	2098	sweet, powdery, balsam, vanilla, fruity, plum, cherry, tonka	sweet, fruity, licorice, cherry, vanilla, coumarin
Vanillyl acetate	57404-55-4	-	-	-	-	-
4-Nitrobenzyl acetate	619-90-9	-	-	-	-	-
Piperonyl acetate	326-61-4	894	2068	2912	sweet, floral, strawberry jam, hawthorn, metallic	floral, soapy, fruity, berry and slightly jammy with a powdery nuance

^a – Chemical Abstracts Service; ^b – Joint FAO/WHO Expert Committee on Food Additives; ^c – The Council of Europe; ^d – Flavor Extract Manufacturers Association; ^e – Based on the data of The Good Scents Company Information System (http://www.thegoodscentscompany.com/index.html)

Table 2. Antioxidant activities of the obtained esters determined by means of DPPH⁻ assay.

	AA (%)	IC ₅₀ (mM)
Benzyl acetate	3.51 ± 1.56	>100
2-Hydroxybenzyl acetate	10.07 ± 1.04	62.65 ± 7.95
4-Hydroxybenzyl acetate	7.70 ± 0.30	85.72 ± 1.02
4-Methoxybenzyl acetate	3.12 ± 0.41	>100
Vanillyl acetate	<u>55.15 ± 1.88*</u>	0.83 ± 0.04
4-Nitrobenzyl acetate	4.64 ± 0.68	>100
Piperonyl acetate	3.64 ± 0.25	>100

* 1 mM instead of 10 mM; AA – antioxidant activity; IC_{50} - concentration required for 50% reduction of the DPPH radical

The highest antioxidant activity!

Table 3. Comparison of antimicrobial activity of the obtained esters.

	Inhibition zone diameter (mm)		Ester sensitivity*		
	E. coli	S. aureus	E. coli	S. aureus	
	PCM 2057	PCM 2054	PCM 2057	PCM 2054	
Benzyl acetate	$6.7 \pm 0.6 \text{ CD}$	$6.0 \pm 0.0 \text{ C}$	No effective	No effective	
2-Hydroxybenzyl acetate	<u>19.0 ± 1.0 A</u>	<u>20.3 ± 0.6 A</u>	<u>Medium</u>	Strong	
4-Hydroxybenzyl acetate	$6.0 \pm 0.0 \text{ D}$	$6.0 \pm 0.0 \text{ C}$	No effective	No effective	
4-Methoxybenzyl acetate	8.7 ± 1.2 BC	$6.0 \pm 0.0 \text{ C}$	No effective	No effective	
	10.7 ± 1.5 B	13.7 ± 0.6 B	Weak	Weak	
	$6.0 \pm 0.0 \text{ D}$	$6.0 \pm 0.0 \text{ C}$	No effective	No effective	
Piperonyl acetate	7.7 ± 0.6 CD	$6.0 \pm 0.0 \text{ C}$	No effective	No effective	. Tit
* <10 mm - no effective; 10-16 m Means with the same capital let	m - weak; 16-20 mm - 1 ter (A-E) in the column	nedium; >20 mm - stror did not differ significat	ng ntly ($\alpha = 0.05$).	highest antibacteri	al activ

Conclusion

The presented herein study showed the possibility of modifying benzyl alcohol and its derivatives to acetate esters via enzymatic transesterification of vinyl acetate.

The synthesized esters can be categorized into three groups, i.e., flavouring substances (benzyl, 4-methoxy, and piperonyl acetates), antioxidant agents (vanillyl acetate) and antimicrobial compounds (2-hydroxybenzyl acetate).

The described preliminary research should be extended in order to deepen the knowledge about the activity of the compounds obtained and compare them with their precursors (benzyl and other alcohols)

There should be investigated the antimicrobial activity against a larger amount of food spoilage microorganisms and the antioxidant activity using other known assays, as well as in convenience foods.

Thank you

for your attention!