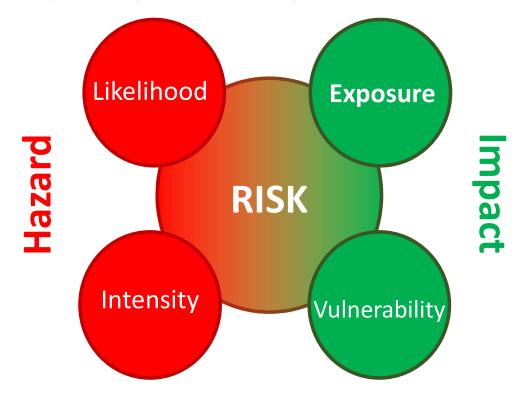
# Estimating Fire Hazard in a Protected area of central Spain (Cabañeros National Park) by a full characterization of vegetation using LiDAR

Viedma, O.; Cuevas, V. Torres, I. and Moreno, J.M.


Department of Environmental Science. University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain.

E-mail addresses: <u>olga.viedma@uclm.es;</u> <u>Victor.Cuevas1@alu.uclm.es;</u> <u>ivan.torrres@uclm.es;</u> josem.moreno@uclm.es

### **INTRODUCTION**

### FIRE RISK AND VULNERABILITY

The main objective of **fire risk analysis** is to estimate the **probability of exposure** of high value resources and assets **to forest fires at different levels of intensity** and **to predict the responses of these resources and values**. Consequently, forest fire risk can be defined as the **multiplicative interaction** between the **hazard** (probability and intensity of a fire) and its **impact** (exposure and vulnerability).



### **COMPONENTS OF RISK AND VULNERABILITY**

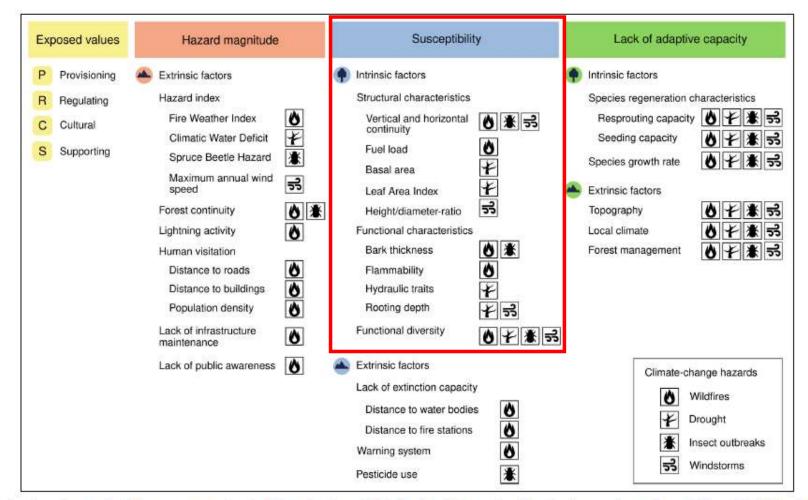


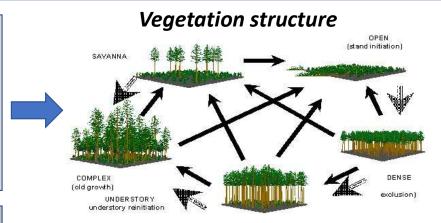

Figure 3. Indicators for each of the components of risk and vulnerability for the four main climate-change hazards considered in this study (wildfires, drought, pests, and windstorms).

Source: Lecina-Diaz et al. 2020 Front Ecol Environ 2021; 19(2): 126–133, doi:10.1002/fee.2278

### **OBJECTIVES**

#### **Main Objective:**

- 1. To classify the landscape by:
  - its "fire hazard" using the Fuel Models (FMs) as framework
  - its "resistence" and "resilience" to forest fires as main disturbance using plant functional traits


#### **Specific Objectives:**

- 1. To **pre-process adequately LiDAR data** to derive **forest metrics** as accurate as possible. Sensitivity analysis of filter algorithms to classify the points cloud (ground-no ground).
- 2. To **develop FMs complexes** to characterize the structure, the composition and the moisture content of vegetation (at both **pixel** and **polygon** scales).
- 3. To link the developed FMs with standard FMs as those done by Scott and Burgan (2005) and Rothermel (1972).
- 4. To carry out fire spread simulations at landscape scale based on the FMs using the FLAMMAP soft.

### **MATERIAL AND METHODS**

#### LIDAR DATA

- FCC (total, trees, understory)
- Height statistics
- Total and by vegetation strata: Low (< 1m); Medium (1-2m); Tall (2-4m)</li>



#### Vegetation composition

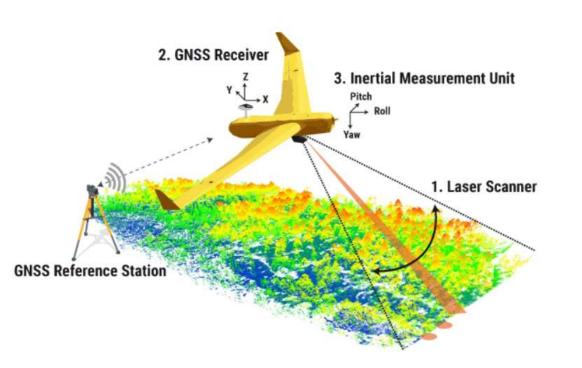


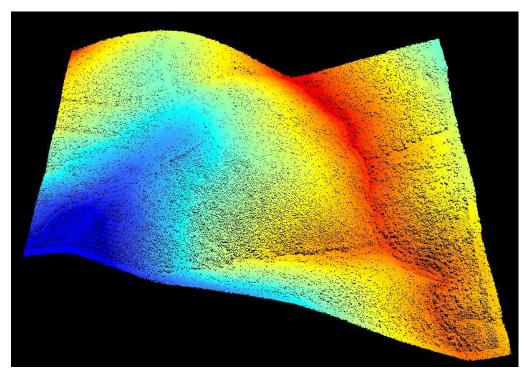
Community types:

- Grasses
- Shrubs
- Forests (conifers, broadleaved: evergreen-deciduous)

#### NATIONAL FOREST MAP + AUXILIARY DATA

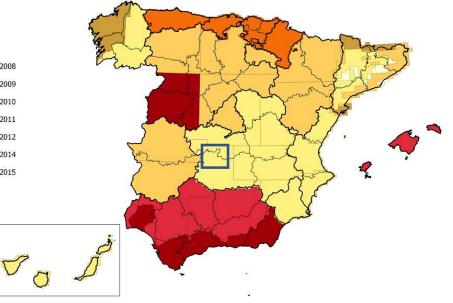
Dominant species (first three ones)


Functional traits: resistence and resilience to forest fires



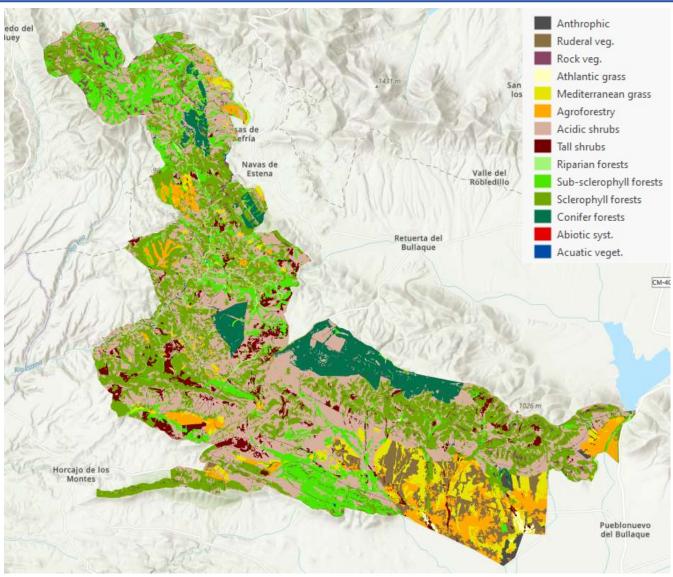



### LIDAR DATA


- 1. The LiDAR sensor responsible for the emission and reception of the laser pulse, measurement of the reading angle and the time it takes for the emitted pulse to reflect on a surface.
- 2. The Global Positioning System (GPS-GNSS) whose function is to determine the x, y, z coordinates of the LiDAR sensor during its trajectory together with a GPS ground station.
- **3.** The inertial measurement unit (IMU) measures the heading of the aircraft. This is combined with the LiDAR sensor, which establishes the angular orientation for each pulse.






### SPANISH LIDAR DATA (since 2008)

| TECHNICAL SPECIFICATIONS LID          | DAR PNOA            |           |
|---------------------------------------|---------------------|-----------|
| Density (points/m2)                   | 0,5-1               |           |
| Point spacing (m)                     | 1,41                |           |
| LiDAR sensor                          | ALS 50 – II         | Leyenda   |
| FOV (º)                               | 50                  | Años      |
| PRF (kHz)                             | 70 min              | 2008      |
| Sweep Frequency (Hz)                  | 70Hz                | 2010      |
| Speed (knots)                         | 148                 | 2011 2012 |
| Speed (Km/h)                          | 274                 | 2014      |
| Transversal overelapping (%)          | 15                  | 2015      |
| Altimetric discrepancy between passes | ≤ 0,40 m            |           |
| RMSE                                  | ≤ 0,20 m            | 0         |
| Distance to reference stations        | ≤ 40 km             | vo V~     |
| Spectral resolution                   | 8 bits              | * 0 *     |
| GPS                                   | min. 2Hz            |           |
| Pixel size (spatial resolution)       | 0,25 m              |           |
| Maximum length of a longitudinal pass | 4 tiles from MTN 50 |           |



## NATURAL VEGETATION SYSTEMS MAP

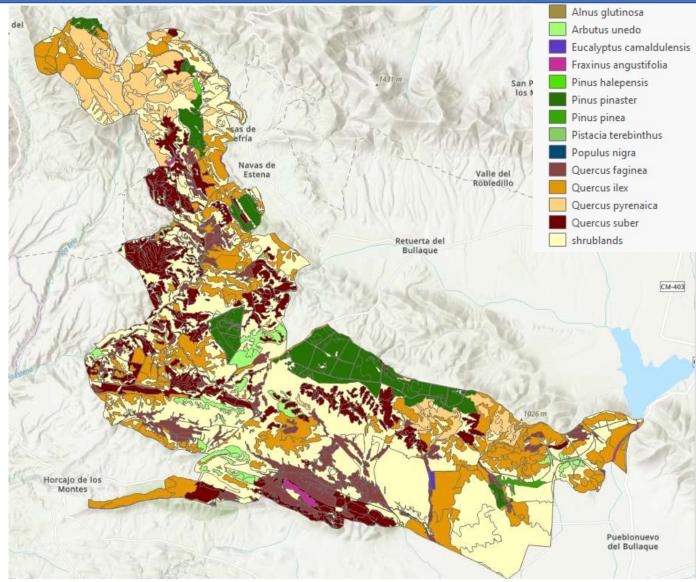
**Multilevel legend** 



### NATURAL VEGETATION SYSTEMS MAP

### **Multilevel legend**

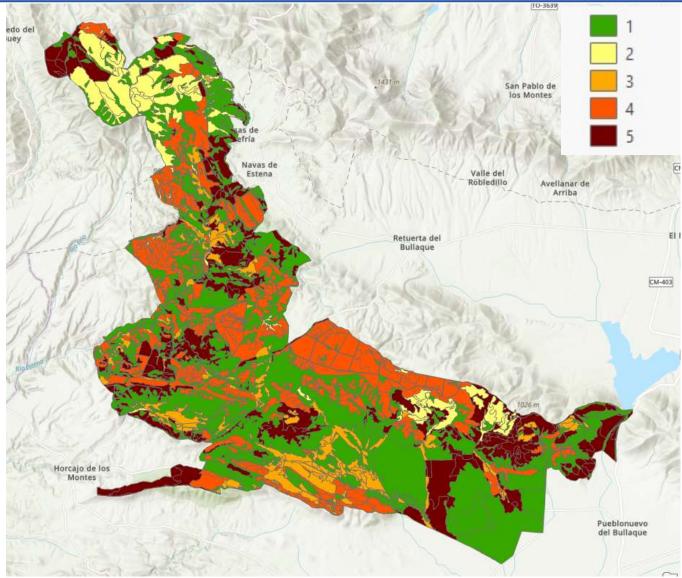





Abedulares meridionales Aqua Alcornocales Alisedas Brezales enanos Brezales higroturbosos Brezales negros Brezales Erica australis Choperas Cortafuegos Cultivos Dehesas Qfaginea Dehesas\_alcomoque Dehesas\_encina Dehesas encina alcomoque Encinar\_alcornocal Encinares carrascales Escobonales Frespedas Infraest\_viales Level 3 Jarales Loreras Madroñales Melojares Pastizales\_diente Pastos terofiticos Pastos terofiticos nitrificados Pinares Pinus pinaster Pinares Pinus pinea Praderas juncales Quejigares Saucedas Tamujares Vallicares Vegetación acuática Zarzales Zonas edificadas cdades\_cantiles vegetacion canchales

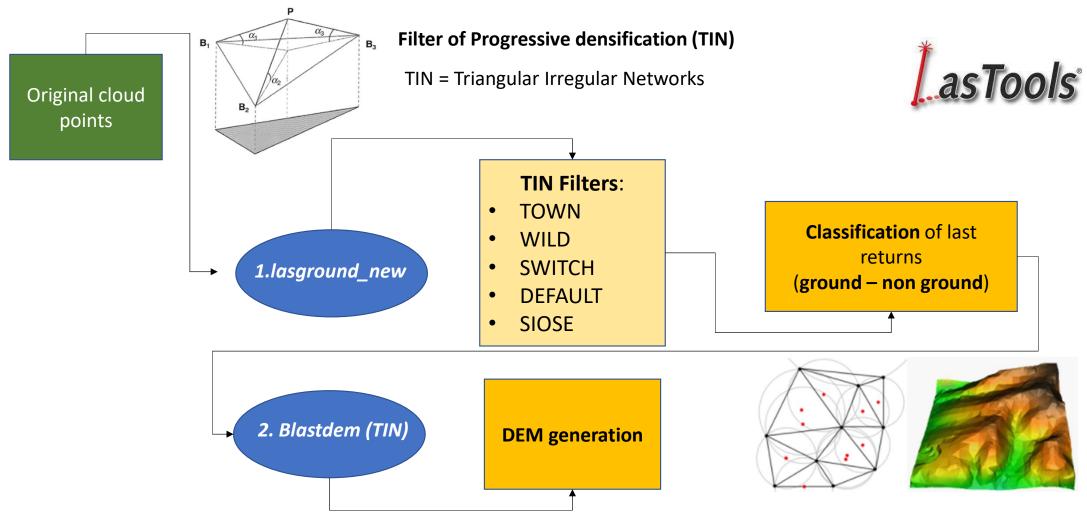
## NATIONAL FOREST MAP (2004)

DOMINANT SPECIES (3 LEVELS)


## MATERIAL



### NATIONAL FOREST MAP (2004)

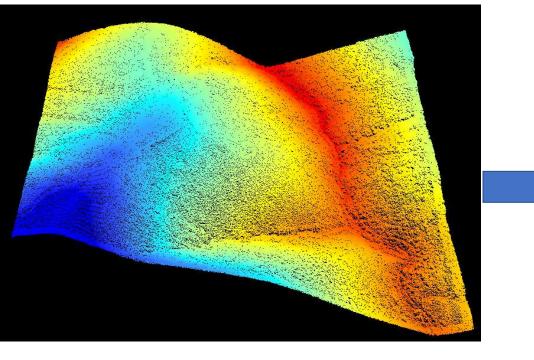

### **FLAMMABILITY** DOMINAT SPECIES

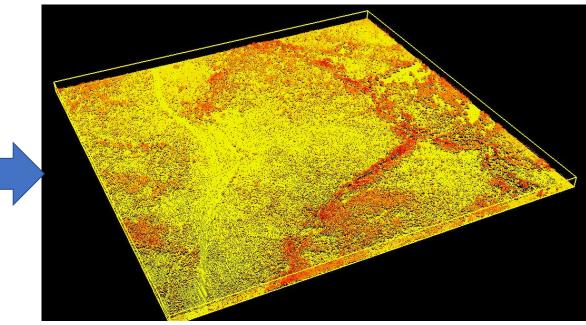
### MATERIAL



**0. PRE-PROCESSING OF THE ORIGINAL CLOUD POINTS** Original cloud asTools points Ordered and Compresed and 2. Laszip 3. Lasinfo 1. lasort indexed tiles merged tiles -merged Lasvalidate Information and **Depurated cloud** Cleaned cloud 4. Lasnoise 5. lasduplicate validation points points reports

#### **1. CLASSIFICATION OF ORIGINAL CLOUD POINTS: GROUND – NON GROUND**

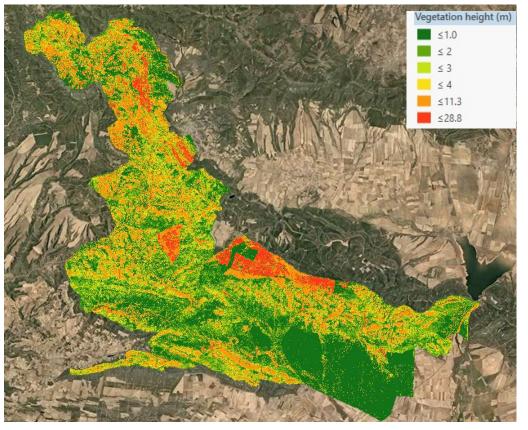


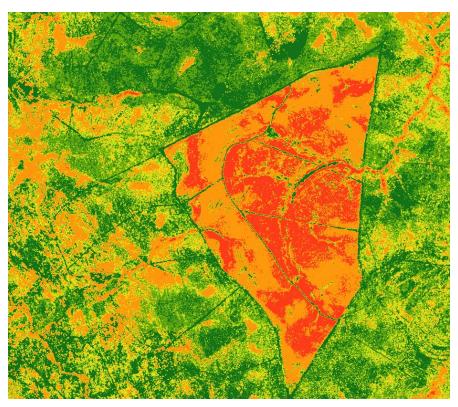


### 2. HEIGHT NORMALIZATION

Classified points (ground-non ground)
Lasheight –replace\_z

NORMALIZED ELEVATION OF THE CLOUD POINTS (MIN= 0)






### **3. PIT-FREE CANOPY HEIGHT MODEL**

Normalized elevation of cloud points

### grid\_canopy pitfree(0,2,5,10,15,20,30)





R

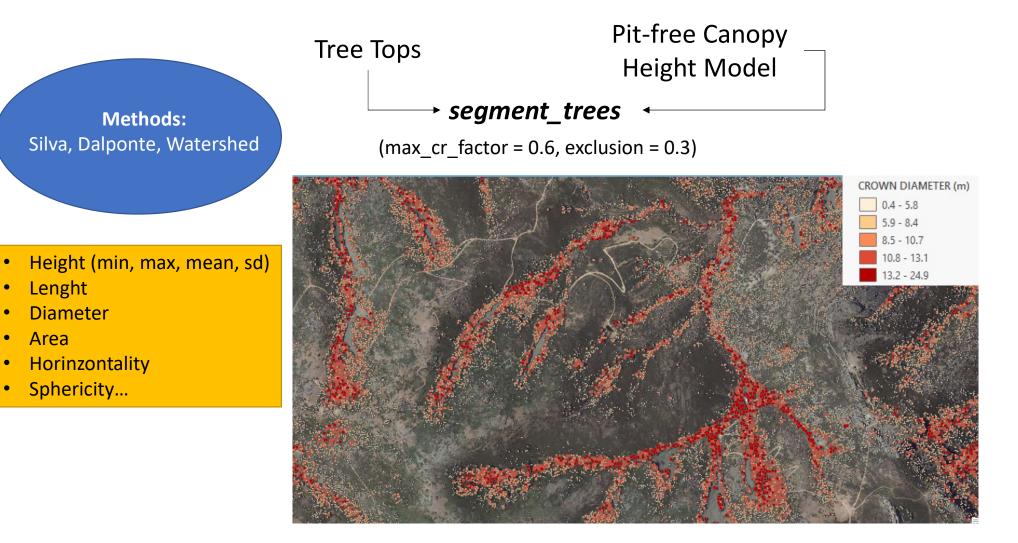
#### METHODOLOGY **4. VEGETATION METRICS** asTools Normalized elevation of cloud points Lascanopy At Grid Scale At Polygon Scale FCC trees (%) 0.0 - 6.4 6.5 - 16.4 Fraction Cover estimated by Height Bins 16.5 - 28.8 (density of points by height thresholds) 28.9 - 43.4 43.5 - 73.1 Understory (< 0.3m; < 1m; 1-2m and 2-4m) Canopy (> 4m) **Height metrics for Understory and Canopy** (Mean, Max, Min, SD, Percentiles 5-50-90-95)


### **5. TREE TOPS LOCATION**

Normalized elevation of cloud points

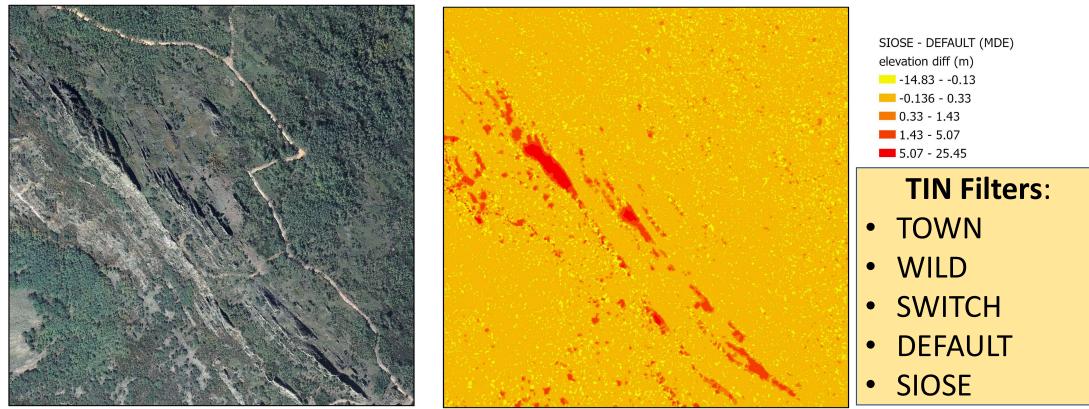


(Different window sizes: adaptative, fixed 5 and 10)

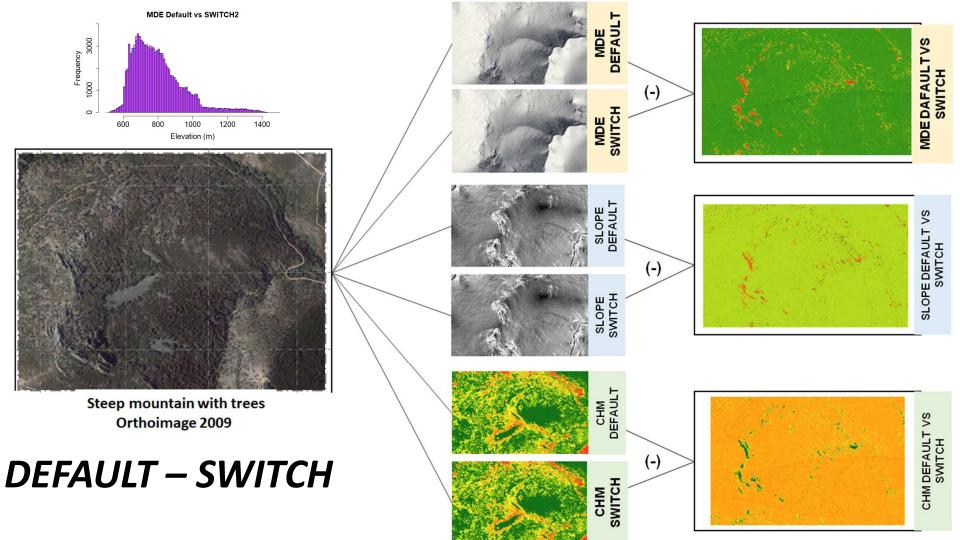





#### WINDOW SIZE: FIXED 10




### **6. CROWN METRICS**




#### **1. SENSITIVITY ANALYSIS OF THE DIFFERENT PROGRESSIVE DENSIFICATION FILTERS**

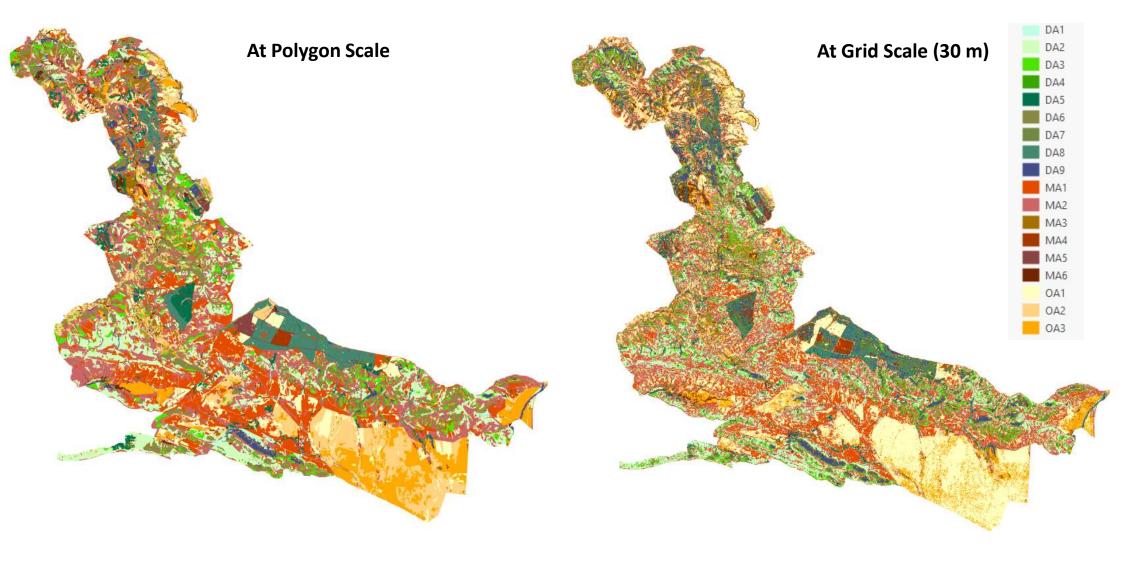
### **DEFAULT – SIOSE DEMs**



#### **1. SENSITIVITY ANALYSIS OF THE DIFFERENT PROGRESSIVE DENSIFICATION FILTERS**



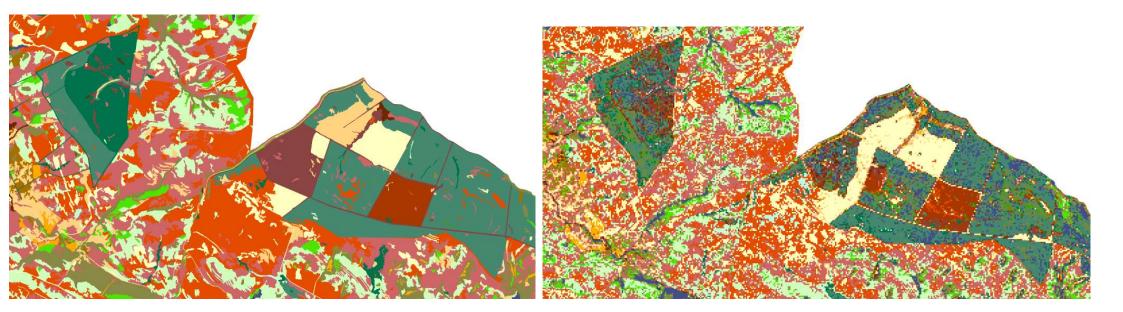
#### 2. FUELS STRUCTURE CHARACTERIZATION (LIDAR DATA)


| Fractional cover              | Understory<br>height | Treeless /Open forests<br>(FCC trees < 25 %) | Transitional forests<br>(FCC trees < 50 %) | Dense forests<br>(FCC trees ≥ 50 %) |
|-------------------------------|----------------------|----------------------------------------------|--------------------------------------------|-------------------------------------|
| LOW LOAD                      | small: < 1m          | OA1                                          |                                            |                                     |
| (FCCtot < 25 %)               | medium: 1-2m         | OA2                                          |                                            |                                     |
| (10000 < 25 %)                | tall: 2-4 m          | OA2                                          |                                            |                                     |
| MODERATE LOAD                 | small: < 1m          | MA1                                          | MA4                                        |                                     |
| (FCCtot $\geq$ 25 and < 50 %) | medium: 1-2m         | MA2                                          | MA5                                        |                                     |
| $(FCClot \ge 25 and < 50\%)$  | tall: 2-4 m          | MA3                                          | MA6                                        |                                     |
| HIGH LOAD                     | small: < 1m          | DA1                                          | DA4                                        | DA7                                 |
| (FCCtot ≥ 50 %)               | medium: 1-2m         | DA2                                          | DA5                                        | DA8                                 |
| $(FCCIOI \ge 50\%)$           | tall: 2-4 m          | DA3                                          | DA6                                        | DA9                                 |

**OA**: Open areas (low fuel load)

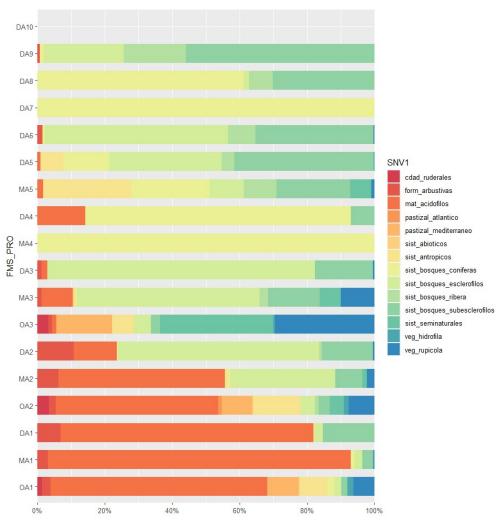
**MA**: Medium areas (moderate fuel load)

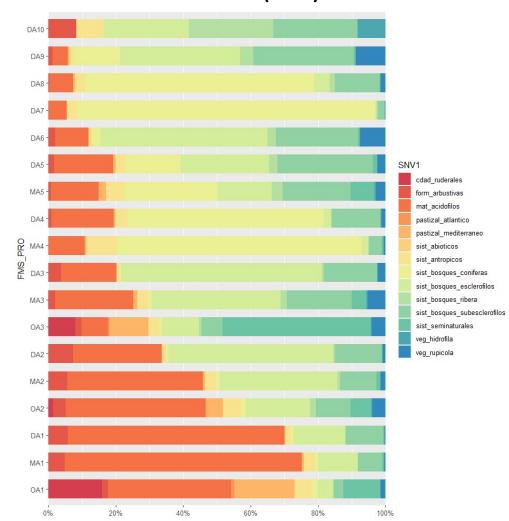
**DA**: Dense areas (high fuel load)


#### **FUELS STRUCTURE CHARACTERIZATION (LIDAR)**



### FUELS STRUCTURE CHARACTERIZATION (LIDAR)

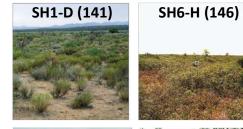

At Polygon Scale


At Grid Scale (30 m)



#### FUEL MODELS OF MAIN VEGETATION TYPES

#### At Polygon Scale





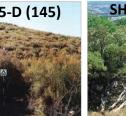

At Grid Scale (30 m)

| GRASSLANDS (GR)<br>(Scott and Burgan)     | Unders                          | story height         |     | eless /Open forests<br>FCC trees < 25 %) | GR1-D (101)       |               |                  |
|-------------------------------------------|---------------------------------|----------------------|-----|------------------------------------------|-------------------|---------------|------------------|
| VERY LOW LOAD                             | small: <                        | small: < 1m          |     | GR1-D                                    |                   |               |                  |
| LOW LOAD<br>(FCCtot < 25 %)               | small: <<br>mediur<br>tall: 2-4 | n: 1-2m              | (GF | R2-D/GR3-H) - GR5-H                      | GR2 (102)         | GR3 (103)     | GR5 (105)        |
| MODERATE LOAD<br>(FCCtot ≥ 25 and < 50 %) | small: <<br>mediur<br>tall: 2-4 | n: 1-2m              |     | (GR4-D/GR6-H)                            | GR4 (104)         | GR6 (106)     | M. Carl          |
| HIGH LOAD                                 | small: < 1m<br>medium: 1-2m     |                      |     | (GR7-D/GR8-H)                            | - Constant        |               |                  |
| (FCCtot ≥ 50 %)                           | tall: 2-4                       | GR9-H                |     |                                          | 6                 |               |                  |
|                                           |                                 | GR1-D                |     | OA                                       | GR7 (107)         | GR8 (108)     | GR9 (109)        |
|                                           |                                 | (GR2-D/GR3-<br>GR5-H | H)  | OA1-GRASS                                |                   | in the state  | <u>م</u>         |
| IDAR + VEGETATION MAP +                   |                                 | (GR4-D/GR6-          | H)  | MA1-GRASS                                | 22/22/20          |               |                  |
| HUMIDITY CONDITIONS                       |                                 | (GR7-D/GR8-          | H)  | DA1-GRASS                                | <b>Reflection</b> | A MARKA AND A | 1 Same and       |
| D. H. Dry Humid                           |                                 | GR9-H                |     | DA2-GRASS                                |                   |               | ar and the stand |
| D-H: Dry - Humid                          |                                 |                      |     | DA3-GRASS                                |                   |               |                  |

| SHRUBS (SH)<br>(Scott and Burgan) | Understory height           | Treeless /Open forests<br>(FCC trees < 25 %) |
|-----------------------------------|-----------------------------|----------------------------------------------|
| VERY LOW LOAD                     | small: < 1m                 |                                              |
| LOW LOAD                          | small: < 1m                 | (SH1-D/SH6-H)                                |
| (FCCtot < 25 %)                   | medium: 1-2m<br>tall: 2-4 m | SH4-H                                        |
| MODERATE LOAD                     | small: < 1m                 | SH2-D                                        |
| (FCCtot $\geq$ 25 and < 50 %)     | medium: 1-2m<br>tall: 2-4 m | SH3-Н                                        |
|                                   | small: < 1m                 | SH8-H                                        |
|                                   | medium: 1-2m                | SH5-D                                        |
| (FCCtot ≥ 50 %)                   | tall: 2-4 m                 | (SH7-D/SH9-H)                                |
| 1                                 | (SH1-D/SH6-H)               | OA1-SHRUBS                                   |
|                                   |                             | OA2-SHRUBS                                   |
| LIDAR +                           | SH4-H                       | OA3-SHRUBS                                   |
| VEGETATION<br>MAP +               | SH2-D                       | MA1-SHRUBS                                   |
| HUMIDITY                          | SH3-Н                       | MA2-SHRUBS                                   |
| CONDITIONS                        | 51511                       | MA3-SHRUBS                                   |
|                                   | SH8-H                       | DA1-SHRUBS                                   |
|                                   | SH5-D                       | DA2-SHRUBS                                   |
| D-H: Dry - Humid                  | (SH7-D/SH9-H)               | DA3-SHRUBS                                   |





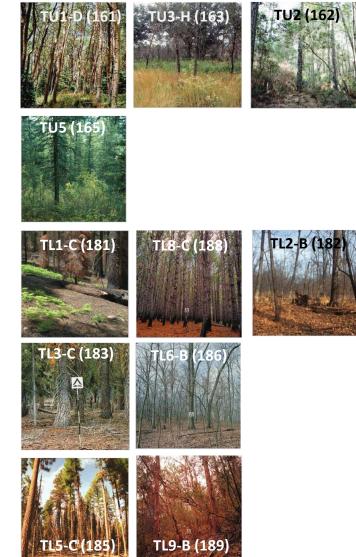













| TIMBER UNDERSTORY<br>(Scott and Burgan)   | Understory height                                 | Transitional forests<br>(FCC trees < 50 %) | Dense forests<br>(FCC trees ≥ 50 %)                     |
|-------------------------------------------|---------------------------------------------------|--------------------------------------------|---------------------------------------------------------|
| VERY LOW LOAD                             |                                                   |                                            |                                                         |
| LOW LOAD<br>(FCCtot < 25 %)               |                                                   |                                            |                                                         |
| MODERATE LOAD<br>(FCCtot ≥ 25 and < 50 %) | litter: < 1m<br>grass-shrub: 1-2m<br>shrub: 2-4 m | (TU1-D/TU3-H)<br>TU2                       |                                                         |
| HIGH LOAD<br>(FCCtot ≥ 50 %)              | litter: < 1m<br>grass-shrub: 1-2m<br>shrub: 2-4 m | TU5                                        | (TL1 -C TL8-C) /TL2-B<br>(TL3-C/TL6-B)<br>(TL5-C/TL9-B) |

|                                                          | (TU1-D/TU3-H)         | MA5-GS |  |  |
|----------------------------------------------------------|-----------------------|--------|--|--|
| LIDAR +<br>VEGETATION<br>MAP +<br>HUMIDITY<br>CONDITIONS | TU2                   | MA6-GS |  |  |
|                                                          | TU5                   | DA6-S  |  |  |
|                                                          | (TL1 -C TL8-C) /TL2-B | DA7-CB |  |  |
|                                                          | (TL3-C/TL6-B)         | DA8-CB |  |  |
|                                                          | (TL5-C/TL9-B)         | DA9-CB |  |  |

C-B: Conifer – Broadleaved forests D-H: Dry - Humid



## **DISCUSSION-CONCLUSIONS**

The **TIN filter** based on **default switches** for separating "*ground –non ground*" points was more accurate than the other TIN switches.

The **Silva's and Dalponte's segmentation methods** to identify the **trees crowns** were best than the watershed one.

Our"own" fuel models (FMs) were based on vegetation structure (Lidar data): the percentage of vegetation cover (fuel load), the height of the understory, and distinguising between open-transitional-dense Forests.

The link between our own FMs and standard FMs as the Scott and Burgan's ones requires to cross our FMs with Vegetation and Forests maps to allow identifying dominant species and then, to be able for differentiating between *Grass-Shrubs* and between *Conifers-Broadleaved Forests*.

#### Future work:

To get other auxiliary information as **proxy of the fuel moisture** such as the wetness index of the Tasseled Cap Transformation from Landsat, the LAI/FPAR from MODIS images, topographic wetness index...

To characterize **vegetation vulnerability** based on the **flammability** conditions and the capacity to cope with fire of the different **plant funtional traits.** 



