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Abstract: Preterm pregnancies are one of the leading causes of morbidity and mortality amongst 

children under the age of five. This is a global issue and has been identified as an area requiring 

active research. The emphasis now is to identify and develop methods of predicting the likelihood 

of preterm birth. This paper uses physiological data from a group of patients in active labor. The 

dataset contains information about fetal heart rate (FHR) and maternal heart rate (MHR) for all 

patients and electrohysterogram (EHG) recordings for the measurement of uterine contractions. For 

the physiological data analysis and associated signal processing, we utilize deep wavelet scattering 

(DWS). This is an unsupervised decomposition and feature extraction method combining charac-

teristics from deep learning convolutions, as well as the classical wavelet transform, to observe and 

investigate the extent to which active preterm labor can be accurately identified from an acquired 

physiological signal, the results of which were compared with the metaheuristic linear series de-

composition learner (LSDL). Additional machine learning algorithms are tested on the acquired 

physiological data to allow for the identification of optimal model architecture for this specific phys-

iological data. 
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1. Introduction 

Preterm is an identified widescale epidemic which has been pointed out by the 

World Health Organization (WHO) as one of the leading causes of death in children under 

the age of five, globally. As a result, active work is ongoing towards effective means of 

diagnosis and care for mothers and fetuses who are subject to premature births and de-

livery, even though the underlying cause and physiological manifestation remains un-

known [1–4]. A variety of means are currently employed towards the assessment of a 

potential preterm delivery which have been widely reported to be associated with a high 

degree of uncertainty stemming from the subjectivity of their data acquisition or the na-

ture of data itself [1]. The use of physiological signals—particularly uterine contractions 

alongside machine learning-based pattern recognition—has seen a sharp increase in the 
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literature reported in this area. Nsugbe et al. notably built on the work done in this area 

by proposing a cybernetic system which fosters a form of cyber-human collaboration in 

order to enhance proactive care strategies for preterm patients with active collaboration 

between clinicians and a prediction machine [3,5,6]. 

Work done by López-Justo et al. [7] from a group of patients showcases that other 

physiological signals, in addition to uterine contractions, can be utilized towards active 

inference and predictions of preterm births in pregnant patients. This work utilizes data 

from the published study by López-Justo et al. which spans uterine contractions, and fetus 

and maternal heart cardiac signals towards the prediction of a potential preterm birth in 

women in active labor using the deep wavelet scattering unsupervised feature extraction 

method [7,8]. This also builds on prior work where the linear series decomposition learner 

(LSDL) was investigated towards the prediction exercises [9–12]. 

Explicitly speaking, the contributions of this paper are as follows; the application of 

the DWS as a means of unsupervised feature extraction for the EHG, FHR and MHR phys-

iological signals, the combination of the use of the LSDL followed by unsupervised feature 

extraction with the DWS, and Investigation of the prediction accuracies of the various 

machine learning models. 

2. Materials and Methods 

2.1. Dataset 

The data used as part of this study comprises of physiological recordings from a 

number of patients and are from the published work of López-Justo et al. [7]. The data 

was collected from the “Mónica Pretelini Sáenz” Maternal-Perinatal Hospital, Toluca, 

State of Mexico, Mexico, where it also received ethical approval [7]. A preterm labor is 

defined as patient who delivered during the 32–36 weeks stage of gestation, while term 

labor refers to patients who delivered within 38–40 weeks of gestation [7]. As part of the 

assembly and call for patient volunteers, patients with twin pregnancies, gestational dia-

betes, hypertensive disorders, epidural blocking and degenerative diseases were not in-

cluded in the study. 

The heartbeat signals were recorded using the Monica AN24 system, designed by 

Monica healthcare, while the EHG data was recorded using a set of bipolar electrodes, 

where all of the data were acquired using a sampling rate of 900 Hz [7]. All acquired sig-

nals were post-processed with the MonicaSDK software. For the final analysis, 48 patients’ 

data for the maternal heart beat (22 preterm and 26 term), and 45 patients (17 preterm and 

28 term) for the fetus heartbeat were used. 

The uterine contraction signal worked with an optimal single channel with the Mon-

icaSDK software, where an envelope of the data was produced and subsequently 

downsampled with a 2-s epoch averaging scheme. The downselected files were chosen to 

ensure that a minimum of 4 s of uterine contraction were available for all files for the 

subsequent analysis, which resulted in 47 patients’ data for the final signal processing 

exercise, of which 27 of the patients’ data were term and 20 were preterm. 

The SMOTE algorithm was employed for class balancing purposes, and a windowing 

scheme of 10 disjointed windows was used on the data, which divides each candidate 

signal into 10 equally sized windowed slices [13]. 

2.2. Signal Processing and Decompositions 

2.2.1. DWS 

This method enables a form of unsupervised feature extraction where the features 

can be said to be robust to factors such as translations, whilst being continuous altogether 

[14–18]. Parameters such as the wavelets and filters are preset, which reduces the overall 

computational load but breeds ground for uncertainties [14–18]. The method presents a 

merge of knowledge from convolutional neural networks (CNNs) alongside wavelet scat-

terings, where trade-offs are made whilst retaining their key properties [14–18]. A further 
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strength of the method is its ability to work with a constrained amount of samples, due to 

its ability to extract features across all scales of decompositions which it conducts [14–18]. 

In terms of mathematical formulation, given a signal 𝑓(𝑡) being filtered with a low 

pass Ø  with a wavelet Ψ which spans a range of frequencies identical to that of the signal, 

assume a low pass filter ØJ(𝑡) which induces a localized translation invariance of the sig-

nal at a specific scale 𝑇, while the associated family of wavelets indices which possess an 

octave frequency distribution 𝑄𝑘 is represented as ∧k, and the multiscale high pass filter 

banks {Ψjk}𝑗𝑘∈∧k
 are formed via a dilation of the wavelet [14–18]. The implementation of 

the DWS involves a combination of a deep CNN which iterates and convolves through 

the wavelets and nonlinear modules, as well as an averaging scaling function [14–18]. The 

Gabor wavelet was set as the mother wavelet utilized for signal decomposition, and as 

per related work, the invariance scale was set to 1 s, while the filter banks were set to 8 

wavelets per octave in the first filter bank and 1 wavelet per octave in the second filter 

bank. 

2.2.2. LSDL 

The LSDL is a signal decomposition method which systematically separates a signal 

into component parts in order to minimize redundant components of the signal whilst 

maximizing the overall signal quality [9–11]. The LSDL is framed upon metaheuristic rea-

soning from the area of artificial intelligence and iterative signal decomposition using a 

select basis function from the area of signal processing. The founding study for the LSDL 

was based upon source separations of mixtures from acquired acoustic emissions signals 

which were non-linear and stochastic, where the LSDL showed better results than that of 

the classical wavelet decomposition [9–11]. The method has been applied in external case 

studies within the area of clinical medicine in areas spanning preterm pregnancies, early 

prostate cancer predictions, anesthesia depth prediction, rehabilitation medicine, and psy-

chiatry, where the use of the LSDL for pre-processing of the signal was noted to enhance 

the prediction accuracies within the various highlighted areas [3,20–23]. 

The decomposition act is done in the time domain where a series of heuristics, along-

side a linear basis function, is utilized towards the iterative separation of the signal. The 

identified optimal region in the signal, with respect to an embedded cost function, repre-

sents an area which contains optimal signal information with minimal redundancies 

within the signal. The embedded cost function used as part of the algorithm is the nor-

malized Euclidean distance metric. For this paper, the optimal decomposition region for 

all signals alongside decomposition parameters are adopted from a prior related study, as 

can be seen in Nsugbe et al. [12]. 

2.2.3. LSDL-DWS 

This case represents the merger of the two methods and involves the passing of the 

LSDL decomposed signal through the DWS algorithm for unsupervised feature extrac-

tion. 

Machine Learning 

The following machine learning models were adopted for use in this study: decision 

tree (DT), linear discriminant analysis (LDA), logistic regression (LR), support vector ma-

chines, i.e., linear SVM (LSVM), quadratic SVM (QSVM), cubic SVM (CSVM), fine Gauss-

ian SVM (FGSVM), k-nearest neighbor (KNN), with k selected as 1 [20]. All models, as 

well as hyperparameters, were tuned and iterated using the MATLAB classification 

learner application, where the models were validated using a k-fold validation scheme 

with k chosen as 10. 

  



Eng. Proc. 2022, 4, x FOR PEER REVIEW 4 of 6 
 

 

3. Results 

The classification accuracy was used to quantify the predictive performance of the 

models utilized for the various signals, as applied in previous studies. 

3.1. EHG 

The results for the EHG signals can be seen in Table 1, where first the DWS on its 

own was seen to exhibit a range of prediction accuracies, with the maximum seen to be 

the KNN model, therein showing the feasibility and applicability of the DWS towards 

being used for these kinds of exercises. In the second case, the LSDL pre-processed signal 

was passed through the DWS for unsupervised feature extraction, where the KNN model 

was seen to also be the optimal one, albeit with a slightly lower classification accuracy. 

Table 1. Results of the EHG signals. 

Model DWS LSDL-DWS 

DT 78 74 

LDA 75 73 

LR 76 73 

QDA 80 67 

LSVM 79 73 

QSVM 92 86 

CSVM 86 91 

FGSVM 95 87 

KNN 97 92 

3.2. FHR 

In the case of the FHR, the DWS once again yielded a high figure of 94 % for the KNN, 

but this time the LSDL-DWS produced a higher accuracy, as seen in Table 2. This implies 

that the pre-processing of the FHR signal with the LSDL has shown signs towards max-

imizing the prediction prowess of the signal. 

Table 2. Results of the FHR signals. 

Model DWS LSDL-DWS 

DT 68 99 

LDA 64 99 

LR 64 99 

QDA 70 99 

LSVM 65 99 

QSVM 83 99 

CSVM 92 99 

FGSVM 92 99 

KNN 94 99 

3.3. MHR 

For the case of the MHR, although a high accuracy was obtained once again for the 

KNN model, the combination of the LSDL-DWS result was seen to surpass that of the 

DWS only, as seen in Table 3. This result goes to show the compatibility of the LSDL-DWS 

towards predicting and differentiating between preterm births using either the FHR and 

MHR signals, ahead of the EHG signals, as indicated by the results in the various tables. 
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Table 3. Results of the MHR signals. 

Model DWS LSDL-DWS 

DT 75 98 

LDA 64 98 

LR 64 97 

QDA 75 n/a 

LSVM 64 98 

QSVM 86 98 

CSVM 93 98 

FGSVM 93 92 

KNN 98 96 

4. Conclusions and Future Work 

Preterm births are a global scale epidemic which have been seen to carry lifelong 

health and financial implications to society at large. This work has focused on the predic-

tions of preterm births in patients in active labor using a range of physiological signals. 

As part of this, this work primarily investigated the use of the DWS method, which has 

been seen to allow for unsupervised feature extraction towards the differentiation of pre-

term and term pregnancies while using physiological signals. The method was seen to 

provide high prediction accuracies depending on the machine learning models used, 

where the heartbeat-based signals provided the higher prediction accuracies. The DWS 

was also used in tandem with the LSDL, which offered a further boost in the prediction 

accuracies of the various models, with particular emphasis on the heartbeat-based signals 

once again. However, the potential downside of this is a more intense computational load 

if the model is to be deployed for online use. 

Further work in this area would subsequently involve the use of the unsupervised 

learning algorithms alongside the unsupervised feature extraction prowess of the DWS 

towards potentially forming a fully automated pipeline for the prediction of preterm 

births from acquired physiological signals. 

Author Contributions:  

Funding: This paper was drafted as a result between a collaboration between Nsugbe Research Labs 

UK and University of Mexico State Mexico. 

Institutional Review Board Statement:  

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 

study 

Data Availability Statement: Not applicable. 

Acknowledgments: This paper is in loving memory of Brian’s Dad, who although we did not get 

to meet you, we are all fortunate enough to work alongside your son of whom is a true asset to the 

team at Nsugbe Research Labs. The author would like to thank Brian Kerr from Kerr Editing for 

proof reading this manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Nsugbe, E. A Cybernetic Framework for Predicting Preterm and Enhancing Care Strategies: A Review. Biomed. Eng. Adv. 2021, 

2, 100024. https://doi.org/10.1016/j.bea.2021.100024. 

2. World Health Organization. Preterm Birth. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth 

(accessed on 25 August 2022). 

3. Nsugbe, E.; Obajemu, O.; Samuel, O.W.; Sanusi, I. Enhancing Care Strategies for Preterm Pregnancies by Using a Prediction 

Machine to Aid Clinical Care Decisions. Mach. Learn. Appl. 2021, 6, 100110. 



Eng. Proc. 2022, 4, x FOR PEER REVIEW 6 of 6 
 

 

4. Garcia-Casado, J.; Ye-Lin, Y.; Prats-Boluda, G.; Mas-Cabo, J.; Alberola-Rubio, J.; Perales, A. Electrohysterography in the 

Diagnosis of Preterm Birth: A Review. Physiol. Meas. 2018, 39, 02TR01. https://doi.org/10.1088/1361-6579/aaad56. 

5. Wiener, N. Cybernetics or Control and Communication in the Animal and the Machine, 2nd ed., Reprint; MIT Press: Cambridge, MA, 

USA, 2007; ISBN 978-0-262-73009-9. 

6. Nsugbe, E.; Sanusi, I. Towards an Affordable Magnetomyography Instrumentation and Low Model Complexity Approach for 

Labour Imminency Prediction Using a Novel Multiresolution Analysis. Appl. AI Lett. 2021, 2, e34. https://doi.org/10.1002/ail2.34. 

7. López-Justo, C.; Pliego-Carrillo, A.C.; Ledesma-Ramírez, C.I.; Mendieta-Zerón, H.; Peña-Castillo, M.Á .; Echeverría, J.C.; 

Rodríguez-Arce, J.; Reyes-Lagos, J.J. Differences in the Asymmetry of Beat-to-Beat Fetal Heart Rate Accelerations and 

Decelerations at Preterm and Term Active Labor. Sensors 2021, 21, 8249. https://doi.org/10.3390/s21248249. 

8. Andén, J.; Mallat, S. Deep Scattering Spectrum. IEEE Trans. Signal Process. 2014, 62, 4114–4128. 

https://doi.org/10.1109/TSP.2014.2326991. 

9. Nsugbe, E.; Starr, A.; Jennions, I.; Carcel, C.R. Online Particle Size Distribution Estimation of a Mixture of Similar Sized Particles 

with Acoustic Emissions. J. Phys. Conf. Ser. 2017, 885, 012009. https://doi.org/10.1088/1742-6596/885/1/012009. 

10. Nsugbe, E. Particle Size Distribution Estimation of a Powder Agglomeration Process Using Acoustic Emissions. Thesis, 2017. 

11. Nsugbe, E.; Starr, A.; Foote, P.; Ruiz-Carcel, C.; Jennions, I. Size Differentiation of a Continuous Stream of Particles Using 

Acoustic Emissions. IOP Conf. Ser. Mater. Sci. Eng. 2016, 161, 012090. https://doi.org/10.1088/1757-899X/161/1/012090. 

12. Nsugbe, E.; Reyes-Lagos, J.J.; Adams, D.; Williams Samuel, O. On the Prediction of Premature Births in Hispanic Labour Patients 

Using Uterine Contractions, Heart Beat Signals and Prediction Machines. Unpublished results. 

13. Sample Generator Used in SMOTE-like Samplers—Version 0.9.1. Available online: https://imbalanced-

learn.org/stable/auto_examples/over-sampling/plot_illustration_generation_sample.html (accessed on 25 August 2022). 

14. Mallat, S. Group Invariant Scattering. Commun. Pure Appl. Math. 2012, 65, 1331–1398. https://doi.org/10.1002/cpa.21413. 

15. Bruna, J.; Mallat, S. Invariant Scattering Convolution Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1872–1886. 

https://doi.org/10.1109/TPAMI.2012.230. 

16. Lostanlen, V. Scattering.m 2022. 

17. Liu, Z.; Yao, G.; Zhang, Q.; Zhang, J.; Zeng, X. Wavelet Scattering Transform for ECG Beat Classification. Comput. Math. Methods 

Med. 2020, 2020, e3215681. https://doi.org/10.1155/2020/3215681. 

18. Andén, J.; Mallat, S. Multiscale Scattering for Audio Classification; 2011; pp. 657–662. 

19. Wavelet Scattering. Available online: https://uk.mathworks.com/help/wavelet/ug/wavelet-scattering.html (accessed on). 

20. Nsugbe, E.; Ser, H.-L.; Ong, H.-F.; Ming, L.C.; Goh, K.-W.; Goh, B.-H.; Lee, W.-L. On an Affordable Approach towards the 

Diagnosis and Care for Prostate Cancer Patients Using Urine, FTIR and Prediction Machines. Diagnostics 2022, 12, 2099. 

https://doi.org/10.3390/diagnostics12092099. 

21. Nsugbe, E.; Connelly, S. Multiscale Depth of Anaesthesia Prediction for Surgery Using Frontal Cortex Electroencephalography. 

Healthc. Technol. Lett. 2022, 9, 43–53. https://doi.org/10.1049/htl2.12025. 

22. Nsugbe, E.; Williams Samuel, O.; Asogbon, M.G.; Li, G. Contrast of Multi-Resolution Analysis Approach to Transhumeral 

Phantom Motion Decoding. CAAI Trans. Intell. Technol. 2021, 6, 360–375. https://doi.org/10.1049/cit2.12039. 

23. Nsugbe, E. On the Application of Metaheuristics and Deep Wavelet Scattering Decompositions for the Prediction of Adolescent 

Psychosis Using EEG Brain Wave Signals. Digit. Technol. Res. Appl. 2022, 1, 9–24. https://doi.org/10.54963/dtra.v1i2.40. 


