

Eng. Proc. 2022, 4, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/engproc

Proceeding Paper

Predictive IoT Temperature Sensor †

Ali Elyounsi and Alexander N. Kalashnikov *

Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK;

a8013965@my.shu.ac.uk

* Correspondence: a.kalashnikov@shu.ac.uk

† Presented at 9th International Electronic Conference on Sensors and Applications, 1–15 November 2022;

Available online: https://ecsa-9.sciforum.net.

Abstract: Temperature sensors are widely employed in control systems that maintain required tem-

perature in a vessel or container irrespective of the temperature changes in the outer environment.

However, limited power of the heater/cooler (the plant of the control system) might lead to uncom-

fortable or even inacceptable deviations from the required temperature. This behaviour can be mit-

igated if the control system can have access not only to the present temperature in the vessel but

also to the forecasted environmental temperature. This situation occurs, among others, at industrial

vessels that require elevated temperatures during their operation but shut down out of hours. To

start heating these to the required temperature at the beginning of a working shift wastes processing

time until the required temperature is reached. It is more productive to turn on heating in advance

in order to get the vessel ready on time. In order to achieve fully autonomous automatic operation,

the sensor should have some intelligence and access to the temperature forecast, which can be pro-

vided over the internet. Both these requirements can be met by employing a WiFi enabled micro-

controller. We present development of a predictive IoT temperature sensor based on the ESP32 mi-

crocontroller, which uses internet service to get time and weather forecast, and upload temperature

logs to a cloud server for convenient remote access and storage.

Keywords: predictive temperature management; IoT sensor

1. Introduction

Temperature sensors are used for a wide variety of industrial, scientific, medical and

domestic purposes, and they differ by design and/or operating principles to better suit

their given application. The global market size for these sensors was estimated at 6.3 bil-

lion USD in 2020 with a projected annual growth of 4.8% to 2027 [1]. They are frequently

employed in feedback control systems in order to maintain the required temperature of

an object irrespective of the temperature changes in outer environment. For well insulated

objects the power of the heater/cooler does not need to be very high as the object can be

brought to the required temperature without significant heat losses albeit slowly. How-

ever, the associated time delays might lead to, for example, production losses if the ob-

ject’s temperature is outside of the range acceptable for a manufacturing process. If the

heating/cooling requirements are known or/and can be predicted in advance, the temper-

ature of the object can be managed much more efficiently.

Recent advances in Internet technologies, infrastructure and services made it possi-

ble to develop automated management systems, which provide the level of intelligence

that cannot be achieved by using low cost computing at the edge alone. These services, in

addition to already ubiquitous cloud storage, include, i.a., Internet-of-Thigs (IoT), Indus-

trial Internet-of-Things (IIoT), time, weather forecast, mapping etc servers. As the result,

it became possible to engineer control systems with features, which would be economi-

cally unfeasible a few years ago because of their high capital and running costs. This paper

presents a detailed account of development of a prototype industrial control system,

Citation: Elyounsi, A.; Kalashnikov,

A.N. Predictive IoT Temperature

Sensor. Eng. Proc. 2022, 4, x.

https://doi.org/10.3390/xxxxx

Academic Editor: Francisco Falcone

Published: 1 November 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors.

Submitted for possible open access

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Eng. Proc. 2022, 4, x FOR PEER REVIEW 2 of 4

featuring a single WiFi-enabled microcontroller unit (MCU), which extensively uses In-

ternet services in order to cut off unnecessary energy use and associated costs for a process

tank heater. The reported development was initiated by a Sheffield area-based enterprise

of small/medium size that qualified for development support under the auspices of the

Digital Innovation for Growth programme [2]. The company provides electrochemical

processing services to their customers, which involves the use of heated water tanks.

Many processes must be conducted at elevated temperatures to ensure conformity, con-

sistency, and quality of outcome. Appropriate heating of some water tanks requires many

hours and should be completed by the start of a working day to avoid any waiting time.

At present, the company uses the setup presented in Figure 1. A domestic timer is set

at the end of a working day to switch on the heater after a guesstimated delay. When the

in-tank temperature exceeds that required for the process to be conducted the next work-

ing day, the thermal limit switch switches the heater off. The tank cools down until the

temperature crosses the lower threshold of the thermal switch, and the heater starts to

operate again.

Figure 1. The existing control system and its modification for intelligent management.

This arrangement generally results in the required temperature by the start of the

working day, but because it relies on the guesstimated delay, it can be hit or miss. If the

delay is set with a spacious margin that ensures the tank’s readiness, a substantial amount

of energy can be wasted (Figure 2). If the delay is set with the view to minimise energy

waste, production delays may be encountered.

Figure 2. A typical heating curve with the heater switched on too early. Red bars show the time

intervals when the heater had to be switched on to maintain the required temperature after the tank

cooled off naturally, which wasted energy.

Eng. Proc. 2022, 4, x FOR PEER REVIEW 3 of 4

This project aims to develop an automatic heater control system that would achieve

the required heated tank temperature at the start of a working day without excessive en-

ergy consumption by utilising ambient temperature forecast.

2. Project Requirements and Considerations

As there are approximately ten heated tanks around the company’s premises that

must be controlled, the customer requested development of an independent controller to

simplify trial testing and deployment. The controller needed to save the temperature logs

in the internet cloud and onto an SD card, and it needed to be able to access internet

weather forecasts via the company’s Wi-Fi access point. It also needed to be made from

commercially available off-the-shelf components that do not require the manufacture or

assembly of custom electronic boards. Last, the controller needed to be encased in a ma-

terial that was flexible and expandable.

Safety concerns: the heater should be switched off if the temperature exceeds require-

ments or if the controller loses power.

Security concerns: temperature logs have no notable value to the company or to any

actors with malicious intent. For this reason, operating via the company’s password-pro-

tected access point is sufficient. The Wi-Fi credentials can be set externally after first power

up by using a suitable Wi-Fi password manager that is then stored in the controller’s

RAM. However, because the company’s premises are secure and the credentials are

known to onsite personnel, the option to permanently store the credentials in the flash

memory of the controller was instead selected.

3. Selection of the Hardware

Temperature measurements can be conducted by using a variety of sensors; thermo-

couples and resistance temperature detectors (RTDs) are the most common in industrial

environments. The former has an extended temperature range but lower sensitivity. For

this reason, and because the customer had previously installed RTDs on-site, the Pt100

RTD sensor was selected. It requires glue electronics to communicate data to a microcon-

troller using either analog voltage or a digital interface. The latter option requires more

wiring but is considerably more robust and resilient to noise and was thus considered

preferable. We selected an Adafruit Pt100 RTD temperature sensor amplifier [3], which

eases use of the MAX31865 integrated circuit that is dedicated to RTD handling [4]. Addi-

tionally, we used a DS18B20 digital temperature sensor [5], a cheaper alternative that can

be connected to a microcontroller without use of glue electronics.

Implementation of a Wi-Fi connection to obtain the weather forecast could be done

by using a microcontroller with a Wi-Fi gateway that is controlled either through use of

AT commands or by acting as a serial to the TCP converter. However, there is also a well-

established line of Wi-Fi-enabled systems-on-chip (SoCs) that is manufactured by Espres-

sif and allows for the use of a single component for both the control and Wi-Fi connection.

Although the older generation ESP8266 series is more established and generally cheaper

to deploy, the more recent ESP32 series offers significantly enhanced capabilities that are

useful for prototyping and low volume replication [6].

M5Stack Basic Core [7] was selected because it provides access to a variety of ESP32

pins and allows for easy expansion by combination of the stackable modules. In particular,

we connected the output of the Adafruit PT100 RTD temperature sensor amplifier to the

SPI pins of the ESP32 and the data pin of the DS18B20 sensor to an ESP32 GPIO pin. Both

sensors were powered by the 3.3 V source available on M5Stack Basic Core.

4. Selection of the Development Environment

ESP32 can be programmed using a variety of toolchains, including the Espressif IoT

Development Framework ESP32-IDF (C/C++ compiler and linker), the Arduino environ-

ment, and MicroPython, which becomes increasingly popular because its interpreting

Eng. Proc. 2022, 4, x FOR PEER REVIEW 4 of 4

nature does not require full code re-compilation after every change. Arduino environment

was selected because of availability of example codes, which covered all the identified

needs of this project. This choice was eventually confirmed by the straightforward process

of searching for solutions and workarounds when an added code snippet did not integrate

well with the developed firmware.

5. Selection of the IoT Service Provider

Currently, the Message Queuing Telemetry Transport (MQTT) protocol seems to be

the most used for Internet of Things (IoT) and Industrial Internet of Things (IIoT) applica-

tions [8]. It features a (cloud/LAN) broker that listens constantly for packets from data

producers, stores them, and then serves data consumers upon their request. This allows

both the producers and the consumers to experience disconnection or a loss of power

without losing data. A cloud broker eliminates the need for maintaining a local one, which

is convenient for a user without a dedicated infrastructure.

Despite the large number of Google search results for IoT service providers, most

proved incompatible with the requirements of this project. Some were too expensive, at

the yearly cost of £500 or more for commercial applications (Blynk, Thingspeak, Google

Cloud, Particle IoT, Oracle IoT, Thinger, Ubidots, Pubnub, and IBM Watson to name a

few). Other options did not advertise a transparent pricing structure (e.g., email commu-

nication was required for getting a quote from myDevices), some top providers would be

unlikely to help with development due to the low potential income stream (Microsoft Az-

ure IoT, Amazon IoT Core), some convoluted the process by splitting their operations be-

tween two entities (i.e., Dweet for data producers and Freeboard for data consumers), and

one quite promising option went out of business (Phant).

In fact, we selected Adafruit IO [9] from the outset, as it ticked all the right boxes:

easy setup, capable free-tier account, $10 monthly fee for commercial use, extensive doc-

umentation, and a support forum. Later, when we encountered difficulties, we searched

for alternatives but found none. Throughout our use of Adafruit IO over several months,

we did not lose a single datum, observed 100% server uptime, enjoyed their online Graph-

ical User Interface (GUI) editor, and easily located relevant documentation when needed.

6. Firmware structure and functionality

The firmware development started by exploring examples and then integrated the

selected code snippets from the well-established Adafruit_MAX31865 (for RTD) and

OneWire/DallasTemperature (for DS18B20) Arduino libraries. The Network Time Proto-

col (NTP) servers were accessed based on the code snippets from [10]. For weather fore-

casting we used a free service called Datapoint that is provided by the UK’s Meteorologi-

cal Office (Met Office) to businesses in the UK (it requires registration to get an access key

and location code) [11]. In order to prevent the device from hanging, we employed the

ESP32 watchdog timer based on the code snippets from [12]. Adafruit IO code was inte-

grated at the final stage, after familiarisation with the provided examples. After the rela-

tively straightforward process of getting the code to work, the user interface (a.k.a. dash-

board) was easily developed through use of Adafruit’s online dashboard editor (Figure

3).

Eng. Proc. 2022, 4, x FOR PEER REVIEW 5 of 4

Figure 3. Prototyped Adafruit IO dashboard showing historical graphs on the left, and present val-

ues and manual control switch on the right. Sampling rate was approximately 20 s. The graphs

shown cover the interval of 30 days, which is user selectable. By hovering a mouse pointer over any

graph, the user can observe numerical values of the data of interest.

As using the Adafruit IO Arduino API resulted in some complications, the Adafruit

IO REST API (via POST and GET HTTP requests) were employed instead. The developed

code was shared on the Adafruit IO support forum [13].

The device, when operating at full throttle, consumes around 0.11 A of current. Dur-

ing the light sleep, M5Stack consumes less than 0.01 A, which results in the reduction of

power consumption by over ten times, as sampling temperature and reporting results

takes less than 5 s.

The loop Arduino function, therefore, takes temperature samples from the two tem-

perature sensors, sends the readings to the cloud, displays them on the local M5Stack col-

our LCD display, checks the position of the manual switch on the dashboard, determines

if it is necessary to update the RTC and weather forecast, clears the watchdog timer, and

then enters light sleep mode.

The time to switch the heater on is calculated by considering the heat losses through

the surface and walls of the tank, rated heater power, and the difference between the

tank’s required and forecasted ambient temperatures.

The prototyped device is presented in Figure 4.

Eng. Proc. 2022, 4, x FOR PEER REVIEW 6 of 4

Figure 4. Controller’s prototype at the testing stage.

7. Summary and Conclusions

We detailed development of a prototype intelligent control system, including con-

siderations for relevant hardware, development environment, Internet services used

(NTP, weather forecast, cloud MQTT servers) and results of the development.

In particular, the system made use of the following technologies and services:

NTP servers for getting accurate time references;

Adafruit IO’s MQTT servers, acting as a broker between the data producer (the ESP32

MCU) and the data consumer (the end user);

Adafruit’s IO’s dashboard and layout editor for designing the graphical user inter-

face for the end user;

UK Met Office’s Datapoint for getting location and time specific weather forecast;

Adafruit’s Arduino application programming interface calls were replaced with

more robust HTTP’s GET and PUT commands.

The required hardware includes only parts, available off-the shelf.

The prototype allows the water tanks achieve and maintain the required tempera-

tures, excess energy consumption is curtailed, and absolutely no guesstimation is in-

volved.

Author Contributions:

Funding:

Institutional Review Board Statement:

Informed Consent Statement:

Data Availability Statement:

Acknowledgments: Ali Elyounsi gratefully acknowledge support for his studies from Libyan Em-

bassy.

Conflicts of Interest:

Eng. Proc. 2022, 4, x FOR PEER REVIEW 7 of 4

References

1. Markets and Markets. Temperature Sensor Market by Product Type (Thermocouples, RTDs, Thermistors, Temperature Sensor

ICs, Bimetallic, Infrared, and Fiber Optic Temperature Sensors), Output, End-User Industry, and Region—Global Forecast to

2027. 2020. Available online: https://www.marketsandmarkets.com/Market-Reports/temperature-sensor-market-522.html (ac-

cessed on September 2022).

2. Digital Innovation for Growth (DIfG). Available online: https://www.shu.ac.uk/business/support/start-ups-smes/digital-inno-

vation-for-growth (accessed on September 2022).

3. Adafruit PT100 RTD Temperature Sensor Amplifier. Available online: https://www.adafruit.com/product/3328 (accessed on

September 2022).

4. MAX31865 RTD-to-Digital Converter (Datasheet). Available online: https://datasheets.maximinte-

grated.com/en/ds/MAX31865.pdf (accessed on September 2022).

5. DS18B20 Programmable Resolution 1-Wire Digital Thermometer. Available online: www.maximintegrated.com/en/prod-

ucts/sensors/DS18B20.html (accessed on September 2022).

6. ESP32 vs. ESP8266—Pros and Cons. Available online: https://makeradvisor.com/esp32-vs-esp8266, accessed Sept 2022.

7. ESP32 Basic Core IoT Development Kit (Product Page). Available online: https://shop.m5stack.com/collections/m5-core/prod-

ucts/basic-core-iot-development-kit (accessed on September 2022).

8. MQTT: the Standard for IoT messaging. Available online: https://mqtt.org/ (accessed on September 2022).

9. What is Adafruit IO?. Available online: https://learn.adafruit.com/welcome-to-adafruit-io/what-is-adafruit-io (accessed on Sep-

tember 2022).

10. Getting Date and Time form NTP Server Using ESP32. Available online: https://lastminuteengineers.com/esp32-ntp-server-

date-time-tutorial/ (accessed on September 2022).

11. Met Office Data Point. Available online: https://www.metoffice.gov.uk/services/data/datapoint (accessed on September 2022).

12. How to enable hardware WDT on ESP32 using Arduino IDE. Available online: https://iotassistant.io/esp32/enable-hardware-

watchdog-timer-esp32-arduino-ide/ (accessed on September 2022).

13. Using POST to Add Data Points to a Feed. Available online: https://forums.adafruit.com/viewtopic.php?f=56&t=177055 (ac-

cessed on September 2022).

https://www.marketsandmarkets.com/Market-Reports/temperature-sensor-market-522.html

