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Abstract: Temperature sensors are widely employed in control systems that maintain required tem-

perature in a vessel or container irrespective of the temperature changes in the outer environment. 

However, limited power of the heater/cooler (the plant of the control system) might lead to uncom-

fortable or even inacceptable deviations from the required temperature. This behaviour can be mit-

igated if the control system can have access not only to the present temperature in the vessel but 

also to the forecasted environmental temperature. This situation occurs, among others, at industrial 

vessels that require elevated temperatures during their operation but shut down out of hours. To 

start heating these to the required temperature at the beginning of a working shift wastes processing 

time until the required temperature is reached. It is more productive to turn on heating in advance 

in order to get the vessel ready on time. In order to achieve fully autonomous automatic operation, 

the sensor should have some intelligence and access to the temperature forecast, which can be pro-

vided over the internet. Both these requirements can be met by employing a WiFi enabled micro-

controller. We present development of a predictive IoT temperature sensor based on the ESP32 mi-

crocontroller, which uses internet service to get time and weather forecast, and upload temperature 

logs to a cloud server for convenient remote access and storage. 
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1. Introduction 

Temperature sensors are used for a wide variety of industrial, scientific, medical and 

domestic purposes, and they differ by design and/or operating principles to better suit 

their given application. The global market size for these sensors was estimated at 6.3 bil-

lion USD in 2020 with a projected annual growth of 4.8% to 2027 [1]. They are frequently 

employed in feedback control systems in order to maintain the required temperature of 

an object irrespective of the temperature changes in outer environment. For well insulated 

objects the power of the heater/cooler does not need to be very high as the object can be 

brought to the required temperature without significant heat losses albeit slowly. How-

ever, the associated time delays might lead to, for example, production losses if the ob-

ject’s temperature is outside of the range acceptable for a manufacturing process. If the 

heating/cooling requirements are known or/and can be predicted in advance, the temper-

ature of the object can be managed much more efficiently. 

Recent advances in Internet technologies, infrastructure and services made it possi-

ble to develop automated management systems, which provide the level of intelligence 

that cannot be achieved by using low cost computing at the edge alone. These services, in 

addition to already ubiquitous cloud storage, include, i.a., Internet-of-Thigs (IoT), Indus-

trial Internet-of-Things (IIoT), time, weather forecast, mapping etc servers. As the result, 

it became possible to engineer control systems with features, which would be economi-

cally unfeasible a few years ago because of their high capital and running costs. This paper 

presents a detailed account of development of a prototype industrial control system, 
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featuring a single WiFi-enabled microcontroller unit (MCU), which extensively uses In-

ternet services in order to cut off unnecessary energy use and associated costs for a process 

tank heater. The reported development was initiated by a Sheffield area-based enterprise 

of small/medium size that qualified for development support under the auspices of the 

Digital Innovation for Growth programme [2]. The company provides electrochemical 

processing services to their customers, which involves the use of heated water tanks. 

Many processes must be conducted at elevated temperatures to ensure conformity, con-

sistency, and quality of outcome. Appropriate heating of some water tanks requires many 

hours and should be completed by the start of a working day to avoid any waiting time. 

At present, the company uses the setup presented in Figure 1. A domestic timer is set 

at the end of a working day to switch on the heater after a guesstimated delay. When the 

in-tank temperature exceeds that required for the process to be conducted the next work-

ing day, the thermal limit switch switches the heater off. The tank cools down until the 

temperature crosses the lower threshold of the thermal switch, and the heater starts to 

operate again. 

 

Figure 1. The existing control system and its modification for intelligent management. 

This arrangement generally results in the required temperature by the start of the 

working day, but because it relies on the guesstimated delay, it can be hit or miss. If the 

delay is set with a spacious margin that ensures the tank’s readiness, a substantial amount 

of energy can be wasted (Figure 2). If the delay is set with the view to minimise energy 

waste, production delays may be encountered. 

 

Figure 2. A typical heating curve with the heater switched on too early. Red bars show the time 

intervals when the heater had to be switched on to maintain the required temperature after the tank 

cooled off naturally, which wasted energy. 
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This project aims to develop an automatic heater control system that would achieve 

the required heated tank temperature at the start of a working day without excessive en-

ergy consumption by utilising ambient temperature forecast. 

2. Project Requirements and Considerations 

As there are approximately ten heated tanks around the company’s premises that 

must be controlled, the customer requested development of an independent controller to 

simplify trial testing and deployment. The controller needed to save the temperature logs 

in the internet cloud and onto an SD card, and it needed to be able to access internet 

weather forecasts via the company’s Wi-Fi access point. It also needed to be made from 

commercially available off-the-shelf components that do not require the manufacture or 

assembly of custom electronic boards. Last, the controller needed to be encased in a ma-

terial that was flexible and expandable. 

Safety concerns: the heater should be switched off if the temperature exceeds require-

ments or if the controller loses power. 

Security concerns: temperature logs have no notable value to the company or to any 

actors with malicious intent. For this reason, operating via the company’s password-pro-

tected access point is sufficient. The Wi-Fi credentials can be set externally after first power 

up by using a suitable Wi-Fi password manager that is then stored in the controller’s 

RAM. However, because the company’s premises are secure and the credentials are 

known to onsite personnel, the option to permanently store the credentials in the flash 

memory of the controller was instead selected. 

3. Selection of the Hardware 

Temperature measurements can be conducted by using a variety of sensors; thermo-

couples and resistance temperature detectors (RTDs) are the most common in industrial 

environments. The former has an extended temperature range but lower sensitivity. For 

this reason, and because the customer had previously installed RTDs on-site, the Pt100 

RTD sensor was selected. It requires glue electronics to communicate data to a microcon-

troller using either analog voltage or a digital interface. The latter option requires more 

wiring but is considerably more robust and resilient to noise and was thus considered 

preferable. We selected an Adafruit Pt100 RTD temperature sensor amplifier [3], which 

eases use of the MAX31865 integrated circuit that is dedicated to RTD handling [4]. Addi-

tionally, we used a DS18B20 digital temperature sensor [5], a cheaper alternative that can 

be connected to a microcontroller without use of glue electronics. 

Implementation of a Wi-Fi connection to obtain the weather forecast could be done 

by using a microcontroller with a Wi-Fi gateway that is controlled either through use of 

AT commands or by acting as a serial to the TCP converter. However, there is also a well-

established line of Wi-Fi-enabled systems-on-chip (SoCs) that is manufactured by Espres-

sif and allows for the use of a single component for both the control and Wi-Fi connection. 

Although the older generation ESP8266 series is more established and generally cheaper 

to deploy, the more recent ESP32 series offers significantly enhanced capabilities that are 

useful for prototyping and low volume replication [6]. 

M5Stack Basic Core [7] was selected because it provides access to a variety of ESP32 

pins and allows for easy expansion by combination of the stackable modules. In particular, 

we connected the output of the Adafruit PT100 RTD temperature sensor amplifier to the 

SPI pins of the ESP32 and the data pin of the DS18B20 sensor to an ESP32 GPIO pin. Both 

sensors were powered by the 3.3 V source available on M5Stack Basic Core. 

4. Selection of the Development Environment 

ESP32 can be programmed using a variety of toolchains, including the Espressif IoT 

Development Framework ESP32-IDF (C/C++ compiler and linker), the Arduino environ-

ment, and MicroPython, which becomes increasingly popular because its interpreting 
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nature does not require full code re-compilation after every change. Arduino environment 

was selected because of availability of example codes, which covered all the identified 

needs of this project. This choice was eventually confirmed by the straightforward process 

of searching for solutions and workarounds when an added code snippet did not integrate 

well with the developed firmware. 

5. Selection of the IoT Service Provider 

Currently, the Message Queuing Telemetry Transport (MQTT) protocol seems to be 

the most used for Internet of Things (IoT) and Industrial Internet of Things (IIoT) applica-

tions [8]. It features a (cloud/LAN) broker that listens constantly for packets from data 

producers, stores them, and then serves data consumers upon their request. This allows 

both the producers and the consumers to experience disconnection or a loss of power 

without losing data. A cloud broker eliminates the need for maintaining a local one, which 

is convenient for a user without a dedicated infrastructure. 

Despite the large number of Google search results for IoT service providers, most 

proved incompatible with the requirements of this project. Some were too expensive, at 

the yearly cost of £500 or more for commercial applications (Blynk, Thingspeak, Google 

Cloud, Particle IoT, Oracle IoT, Thinger, Ubidots, Pubnub, and IBM Watson to name a 

few). Other options did not advertise a transparent pricing structure (e.g., email commu-

nication was required for getting a quote from myDevices), some top providers would be 

unlikely to help with development due to the low potential income stream (Microsoft Az-

ure IoT, Amazon IoT Core), some convoluted the process by splitting their operations be-

tween two entities (i.e., Dweet for data producers and Freeboard for data consumers), and 

one quite promising option went out of business (Phant). 

In fact, we selected Adafruit IO [9] from the outset, as it ticked all the right boxes: 

easy setup, capable free-tier account, $10 monthly fee for commercial use, extensive doc-

umentation, and a support forum. Later, when we encountered difficulties, we searched 

for alternatives but found none. Throughout our use of Adafruit IO over several months, 

we did not lose a single datum, observed 100% server uptime, enjoyed their online Graph-

ical User Interface (GUI) editor, and easily located relevant documentation when needed. 

6. Firmware structure and functionality 

The firmware development started by exploring examples and then integrated the 

selected code snippets from the well-established Adafruit_MAX31865 (for RTD) and 

OneWire/DallasTemperature (for DS18B20) Arduino libraries. The Network Time Proto-

col (NTP) servers were accessed based on the code snippets from [10]. For weather fore-

casting we used a free service called Datapoint that is provided by the UK’s Meteorologi-

cal Office (Met Office) to businesses in the UK (it requires registration to get an access key 

and location code) [11]. In order to prevent the device from hanging, we employed the 

ESP32 watchdog timer based on the code snippets from [12]. Adafruit IO code was inte-

grated at the final stage, after familiarisation with the provided examples. After the rela-

tively straightforward process of getting the code to work, the user interface (a.k.a. dash-

board) was easily developed through use of Adafruit’s online dashboard editor (Figure 

3). 



Eng. Proc. 2022, 4, x FOR PEER REVIEW 5 of 4 
 

 

 

Figure 3. Prototyped Adafruit IO dashboard showing historical graphs on the left, and present val-

ues and manual control switch on the right. Sampling rate was approximately 20 s. The graphs 

shown cover the interval of 30 days, which is user selectable. By hovering a mouse pointer over any 

graph, the user can observe numerical values of the data of interest. 

As using the Adafruit IO Arduino API resulted in some complications, the Adafruit 

IO REST API (via POST and GET HTTP requests) were employed instead. The developed 

code was shared on the Adafruit IO support forum [13]. 

The device, when operating at full throttle, consumes around 0.11 A of current. Dur-

ing the light sleep, M5Stack consumes less than 0.01 A, which results in the reduction of 

power consumption by over ten times, as sampling temperature and reporting results 

takes less than 5 s. 

The loop Arduino function, therefore, takes temperature samples from the two tem-

perature sensors, sends the readings to the cloud, displays them on the local M5Stack col-

our LCD display, checks the position of the manual switch on the dashboard, determines 

if it is necessary to update the RTC and weather forecast, clears the watchdog timer, and 

then enters light sleep mode. 

The time to switch the heater on is calculated by considering the heat losses through 

the surface and walls of the tank, rated heater power, and the difference between the 

tank’s required and forecasted ambient temperatures. 

The prototyped device is presented in Figure 4. 
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Figure 4. Controller’s prototype at the testing stage. 

7. Summary and Conclusions 

We detailed development of a prototype intelligent control system, including con-

siderations for relevant hardware, development environment, Internet services used 

(NTP, weather forecast, cloud MQTT servers) and results of the development. 

In particular, the system made use of the following technologies and services: 

NTP servers for getting accurate time references; 

Adafruit IO’s MQTT servers, acting as a broker between the data producer (the ESP32 

MCU) and the data consumer (the end user); 

Adafruit’s IO’s dashboard and layout editor for designing the graphical user inter-

face for the end user; 

UK Met Office’s Datapoint for getting location and time specific weather forecast; 

Adafruit’s Arduino application programming interface calls were replaced with 

more robust HTTP’s GET and PUT commands. 

The required hardware includes only parts, available off-the shelf. 

The prototype allows the water tanks achieve and maintain the required tempera-

tures, excess energy consumption is curtailed, and absolutely no guesstimation is in-

volved. 
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