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Abstract: Early and accurate detection of bearing faults is essential for the safe and reliable working 9 

of industrial machinery units. The main problem of the traditional fault diagnosis method is 10 

manually extracting the features which require the experimenter’s experience; expert knowledge. 11 

Therefore, the shallow diagnostic model's classification rate does not produce good results. To 12 

address this issue, this research proposes a technique to detect and classify bearing faults based on 13 

an effective convolutional neural network (CNN) model, which is capable of performing complex 14 

vibration signals and removing the impact of expert expertise on the feature extraction process. A 15 

time-moving segmentation window is used to segment the vibration raw signal and the segmented 16 

signals are decomposed up to two levels using DWT. After that, decomposed signals are converted 17 

into grayscale images to train and test the proposed CNN model. To verify the performance of the 18 

model, CWRU bearing dataset and MFPT dataset are used. The proposed CNN model achieves the 19 

highest accuracy in terms of performance both under different load conditions as well as under 20 

noisy situations with varying SNR values. The experimental findings show that the proposed sys-21 

tem is effective and extremely dependable in detecting bearing faults. 22 

Keywords: bearing fault; DWT; vibration signals; gay-image; convolutional neural network.  23 

1. Introduction 24 

Bearing fault detection is given special attention by the researcher because of its evident in-25 

dustrial importance among mechanical device components [1]. Bearing is the most essential ele-26 

ment of any rolling machinery. The condition of the bearing has a significant impact on machinery. 27 

According to a review of the literature, 45–55 percent of machines are broken due to bearing failure 28 

[2]. Incorrect bearing defect diagnosis detection and classification can lead to significant system 29 

failure and further financial losses [3]. Early and accurate detection of bearing faults is essential for 30 

the safe and reliable working of industrial machinery units.  31 

Bearing fault detection is a form of classification problem, and classifiers based on Artificial 32 

Intelligence (AI) approaches can successfully classify normal and defective bearing situations. A 33 

machine fault categorization problem is divided into two sections. The first section deals with the 34 

extraction of features from vibration signals, which is utilized to extract fault information-related 35 

features, and the second section is fault classification, which uses the extracted features for problem 36 

detection using various AI approaches [4]. In the traditional Feature extraction step, features are 37 

extracted by Crest-factor, Root Mean Square (RMS), Standard Deviation, Variance, Envelop Spec-38 

trum, Kurtosis, Crest Value, and Estimation [5-7]. 39 

Asr et. al. [8] developed an EMD-based feature extraction method for detecting faults in ro-40 

tating machinery. The EMD's entropy energy was measured, as well as a variety of time and fre-41 

quency characteristics of the vibratory signal. Lei Y et. al. [9] employed an adaptable fuzzy infer-42 

ence system (ANFIS) network to classify rolling faults. Wang et al. [10] used a Support Vector 43 

Machine (SVM) as a classifier in their model for evaluating vibration signals. Attoui et. al. [11] 44 

developed a method for extracting features basis on the analysis of the most impulsive frequency 45 

bands, and the features acquired after the dimensionality-reducing method are input into an AN-46 

FIS to classify bearing defects. 47 
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The traditional Feature extraction procedure [12] finds it challenging to extract features from 1 

bearing defects due to the complicated vibration signals. Existing intelligent defect detection sys-2 

tems in actual industry sectors contain deficiencies in early features and multiple undetected 3 

compound failure mechanisms because a signal is affected by environmental noise due to changes 4 

in working conditions, and the traditional intelligent classification method typically requires 5 

pre-processing the data, manual extracting features and pattern classifier [13]. Because the feature 6 

extraction technique requires a high level of professional expertise feature extraction, the model 7 

does not give appropriate results. 8 

To solve the difficulty of the existing intelligent method, recently deep-learning method is 9 

used and achieved good results, but its application in fault diagnosis is still developing. This study 10 

proposes an effective CNN model for detecting and classifying bearing faults. This study's contri-11 

bution is summarized as follows: 12 

a. A data preprocessing technique is proposed, which used DWT to decompose signals up 13 

to two levels. 14 

b. Creates gray images instead of a one-dimensional vibration signal. 15 

c. Design an effective CNN architecture that uses the grayscale image directly for classi-16 

fication and is capable of performing complex vibration signals, noisy situations with 17 

varying SNR values and can reduce the influence of the expert’s experience. 18 

2. Experimental validation 19 

In this paper, two datasets are used to evaluate the proposed model; CWRU dataset [14] and 20 

the MFPT dataset [15]. 21 
 22 

2.1. CWRU dataset 23 
 24 

The reason for this dataset choice is that CWRU data has been evaluated by various researchers in 25 

the bearing failure research area as a standard and easily accessible dataset [2]. This dataset consists 26 

of four classes such as normal (healthy state), inner race fault, ball fault, and outer race fault. 27 

Accelerometers are used to capture vibration signal data. Figure 1 depicts the experimental setup, 28 

which comprises a 2 hp induction motor. Sampling frequencies of 12 kHz and 48 kHz were 29 

employed for data collecting. The operating condition is considered a deep ball bearing type which 30 

is 6205-2RS JEM SKM. 102400 samples of data are considered in normal bearing in this paper, 31 

similarly, 102400  samples of data are considered in each faulty data such as fault in inner, fault in 32 

ball, and fault in outer. This article considers a 0.014-inch fault diameter.  33 
 34 

2.2. MFPT dataset 35 

The MFPT dataset is provided by the Society for Machinery Failure Prevention Technology [15]. 36 

The MFPT's bearing data makes use of a NICE bearing. This dataset provides three classes of 37 

bearing data such as normal bearing data, fault in the inner race, and fault in the outer race at 38 

various loads. 102400 samples of data are considered in normal bearing in this paper. Similarly, 39 

102400 samples of data are considered in both faulty data such as fault in inner and fault in outer. 40 

3. Proposed System 41 

 42 

Figure 1. Proposed System Architecture 
Signal Preprocessed by Wavelet Transform 

Gray image 

Vibration Raw signal 

Segmented signal 
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Figure 4. Signal-to-gray image construction 

The proposed system adopts an approach for detecting and classifying bearing faults based 1 

on vibration gray-scale images and an Effective CNN model. The proposed system is described in 2 

two key parts. The first part is data pre-processing with signal-to-image conversion and the final 3 

part is the effective Convolutional Neural Network models which effectively extracts the features 4 

and classify the bearing fault diagnosis. Figure 1 presents the overall proposed system architecture. 5 
 6 

3.1. Pre-processing 7 
 8 
This paper proposes an effective data pre-processing technique to effectively extracts the features. 9 

This technique has three steps: segmentation; Discrete Wavelet Transform (DWT) and Gray image 10 

construction. 11 
 12 

3.1.1. Segmentation 13 

The vibration raw signals are segmented by using a time-moving segmentation window. Figure 2 14 

shows the signal segmentation process. 1024 samples are considered for each time-moving seg-15 

mentation window to create a 32×32 matrix. Similarly, 625 and 400 sample data are considered for 16 

each segmentation window to create a 25×25 and 20×20 matrix, respectively. 17 

3.1.2. Wavelet Transform 18 
 19 

Wavelet transform is an application tool that analyzed signals [16]. Wavelet Transform can signify 20 

the complexity of an unsteady signal in frequency or time domain. The DWT is a signal decompo-21 

sition method that uses a set of separate, spatially aligned frequency bands. The vibration signal is 22 

processed by dual filters, yielding dual signals: details and approximation. This procedure is 23 

named analysis signal or decomposition of the signal. The breakdown signal's apparatuses can be 24 

rebuilt further into the original raw signal any losing any information. The DWT is a mathematical 25 

operation that entails analysis and synthesis [17]. This paper focuses on DWT to signify the com-26 

plexity of unsteady segmented vibration signals. This paper used the one-dimensional wavelet 27 

decomposition up to two levels. Fig.3 shows the output of wavelet decomposition. In figure 5 the 28 

two levels of details (d1, d2), and approximation (a2) are chosen for each signal. 29 

 30 

3.1.3. Gray image construction 31 

CNN is used for two dimension analysis (2D) while bearing fault signals are 1D data. Considering 32 

these issues, this paper used an effective data pre-processing technique, which converts the de-33 

composed signals into a gray-scale image. In this method, the decomposed signals sequentially fill 34 

the pixels of the image. After that, each signal that has been segmented converts into the intensity 35 

of the respective pixel in the associated image.  Figure 4 shows the gray image construction pro-36 

cedure. Finally, all of the segmented decomposed signals are converted into gray images, which are 37 

shown below in Figure 5.  38 

 39 

 40 

 41 

 42 

 43 

Figure 2. Signal Segmentation 
Signal Segmented Signal 

Figure 3. The output result of Wavelet Transform 

Ball Fault Outer Fault Normal 

 

Inner Fault 

Figure 5. Gray-scale images of each type 
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2. Proposed Effective CNN Architecture 2 

An effective CNN model for detecting and classifying bearing problem diagnostics is developed 3 

for this proposed system. The proposed effective CNN model consists of three sequential convolu-4 

tional layers, three max-pooling layers, two fully connected layers, a softmax classifier, and 5 

four output layers. The 1st convolutional layer used a (4×4) kernel size of 32 filters, the 2nd con-6 

volutional layer used a (5×5) kernel size of 64 filters, and the 3rd convolutional layer used a (3×3) 7 

kernel size of 64 filters. The 1st max-pooling layer used a (2×2) kernel size of 32 filters, the 2nd  8 

max-pooling layer used 84 filters have a kernel size of (2×2), and the 3rd  max-pooling layer used 9 

84 filters have a kernel size of (2×2). As an activation function, ReLU is used and also used four 10 

fully-connection layers. Softmax is used in this model as a classifier. The network’s parameters are 11 

used for proposed effective CNN architectures, which are presented in Table 1 to explore the best 12 

accuracy. 13 

Table 1. Proposed CNN parameters 14 

Parameters Conditions 

Epochs 30 

Maximum Iterations 1000 

Performance Function 'mse' 

Training Function 'trainlm' 

Optimizer ‘sgdm’ 

Validation Frequency 20 

Learning rate 0.0002 

3. Experimental result & Analysis 15 

3.1.  Proposed system’s performance 16 

Figure 6 exhibits the network model's confusion matrix, which gives a summary of classification 17 

results for four types of bearing faults on the CWRU dataset. The overall accuracy of the proposed 18 

model is 100% on the CWRU dataset 19 

Figure 7 exhibits the network model's confusion matrix, which gives a summary of classification 20 

results. for three types of bearing faults on the MFPT dataset. The proposed model achieved 96%, 21 

100%, and 96% accuracy in normal conditions, with a fault in the inner race and fault in the outer 22 

race respectively. The overall accuracy of the proposed model is 97.7% on the MFPT dataset which, 23 

indicates that the presented model is very dependable in bearing fault detection. 24 
 25 

3.2. Effect of DWT on the classification result 26 

In this section, compare the performance between the using DWT and without DWT in a noisy 27 

environment.  Figure 8 shows the effect of using DWT on classification results. In figure 8, the 28 

performance with DWT is indicated by the red color line on the graph, and the performance 29 

without DWT is indicated by the blue dot line on the graph a noisy condition on the CWRU dataset 30 

and from the graph can see using DWT is better to perform than without DWT at the noisy 31 

environment. The performance with DWT is indicated by the green color line on the graph, and the 32 

performance without DWT is indicated by the yellow dot line on the graph at noisy conditions on 33 

the MFPT dataset. From the graph, we can see at the noisy environment proposed model using 34 

DWT shows better performance on both the CWRU dataset and the MFPT dataset. 35 

Figure 6. Confusion matrix on the CWRU dataset Figure 7. Confusion matrix on the MFPT dataset 



Eng. Proc. 2022, 4, x FOR PEER REVIEW 5 of 6 
 

 

 

 1 

 2 

3.3. Evaluate under various load conditions 3 

In industry or real application, their bearing has to work under different load conditions. When the 4 

load changes, the characteristic of the vibration signal also changes, this complicates the fault 5 

diagnostic process. In this part, we evaluate the proposed CNN model's performance under 6 

various load situations, such as 0 hp, 1 hp, 2 hp, and 3 hp load. 7 

Figure 9 depicts the proposed CNN model's performance under various load conditions. In 0 hp 8 

and 2 hp load conditions, the proposed model achieved 100% accuracy. In 1 hp load, the accuracy 9 

was 98.2%, and 3 hp load condition; the model achieved 99.4% accuracy. 10 
 11 

3.4. Evaluate under a noisy environment 12 

Signals are affected by noise in real-world industrial applications. Noise is another issue that has 13 

evolved as a result of the change in working conditions, which reduces the performance of the 14 

model. In this section, we evaluate how well the proposed system performs in a noisy environment 15 

while classifying bearing faults. The proposed model is first trained on the original data before 16 

being put to the test on noisy data. The noisy signal is created by adding AWG noise to the original 17 

signals with varying SNR. The SNR is calculated as follows: 18 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
)       (3) 19 

The proposed model is tested using noisy signal amplitudes ranging from -8 dB to 10dB. Figure 10 20 

shows the success of the proposed model under noisy situations with varying the SNR value from 21 

-8dB to +10 dB. It can be seen that When SNR is high, all models obtain quite a high accuracy; when 22 

SRN is ≥ 6 dB, all models achieve relatively close to 100%  but when the SNR value is -4 dB, the 23 

SVM accuracy is 68%, WDCNN accuracy is 67.5 and TICNN accuracy is 79.5% but proposed model 24 

accuracy is still 99.7%. However, It can be seen that under a noisy environment SNR = -8dB, the 25 

proposed model still has pretty high accuracy which is 99%. 26 

3.1. Performance of CWRU Vs. MFPT dataset 27 
 28 
In this section, we used 75 gray images from each dataset such as the CWRU dataset and the MFPT 29 

to test the proposed CNN model. Figure 11 depicts the total classification performance. The blue 30 

color represents the CWRU dataset's accuracy; the red color represents the MFPT dataset's 31 

accuracy. The overall classification accuracy of the CWRU dataset is 100% and the MFPT dataset is 32 

97.3%. 33 

In figure 12, the red line shows classification performance under a noisy environment in which 34 

SNR values are -10dB to 10dB and the blue line shows classification performance under a noisy 35 

environment at the same SNR values. From the graph, we can see proposed system provides better 36 

accuracy on the CWRU dataset than the MFPT dataset. 37 

Figure 9. Performance under various load Figure 8. Effect of DWT on the result 

Figure 10. Performance in a noisy environment 
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4. Conclusions 2 

This study aimed to design an effective CNN model based on vibration gray-scale images to solve 3 

the existing problems in bearing fault diagnosis which is capable of performing complex vibration 4 

signals and can reduce the influence of an expert’s experience on the feature extraction procedure. 5 

To verify the performance of the proposed model, CWRU bearing dataset and MFPT dataset are 6 

used. The proposed approach is able to classify bearing faults both under different load conditions 7 

as well as under noisy environments with different values of SNR. The experimental findings 8 

showed that the proposed system is effective and extremely dependable in classifying bearing 9 

faults. 10 
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