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Abstract: The Polar H10 is a low-cost wearable with a heart rate monitor and tri-axial accelerometer 

with potential for many applications. While the device’s heart rate monitor has been widely studied, 

there is no research validating the accelerometer specifically. The purpose of this study was to con-

duct a validation of the Polar H10 accelerometer to establish static and dynamic validity during a 

sports-based task. Static validity was determined by computing the relative error when using a level 

guide to hold each axis of the Polar H10 against gravity. Fifteen healthy adults (8F/7F) participated 

in sports-based tasks while wearing the Polar H10 (Polar Electro, Poland) and a comparison device, 

the MetaMotionR inertial measurement unit (MbientLab Inc., USA). Dynamic validity was charac-

terized using Pearson’s correlation coefficient and root mean square error (RMSE). Additionally, 

common features in human activity recognition (mean magnitude, root mean square, power, and 

signal magnitude area) were computed in 2s windows and compared via RMSE and Wilcoxon rank 

sum tests. When held against gravity, the Polar H10 had relative errors ranging from 2.620% to 

4.288%, suggesting high static validity. During sports-based tasks, the accelerometers had correla-

tions between 0.888 and 0.954, indicating sufficient concurrent validity for all axes, as well as accel-

eration magnitude. The differences in acceleration features were minimal (RMSE for mean, root 

mean square, power, and signal magnitude were 0.003 G, 0.004 G, 0.112, and 0.017 G, respectively), 

but all reached significance (p < 0.001). These results provide evidence for the use of the Polar H10 

accelerometer to measure movement during sport-like activities. 
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1. Introduction 

Usability [1–3] and cost [4] are barriers to the widespread uptake of wearable sensing 

systems. The growth of the commercial wearable market presents an opportunity to over-

come both of these challenges. Consumer-grade devices can be more user-friendly than 

those employed in research, which often require longer set up times [5] and are more 

expensive. However, it is important to establish the accuracy and reliability of all weara-

ble devices, as these factors directly impact data interpretation and the utility of technol-

ogies developed using these sensors (i.e., algorithms and machine learning classifiers) [1]. 

The Polar chest band is a consumer-grade low-cost wearable that has previously been 

validated for heart rate monitoring in adults [6–8] and children [9]. A recent version of the 
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device, the Polar H10, also features a tri-axial accelerometer. While the use of the sensor 

(in conjunction with Polar Team Pro software) to measure speed and distance has been 

investigated [10], the use of the accelerometer has yet to be validated. The purpose of this 

work was to conduct a validation of the Polar H10 tri-axial accelerometer under static and 

dynamic conditions that may support its use in research and technology development. 

2. Methods 

Fifteen healthy adults were recruited from Holland Bloorview Kids Rehabilitation 

Hospital via email lists and word of mouth. Individuals over 18 years of age with normal 

or corrected-to-normal vision and hearing were eligible for the study. Although no 

screened participants were excluded, individuals with pre-existing cardiovascular condi-

tions, a recent musculoskeletal injury (up to 10 days before the study session), and/or a 

condition or injury that could be aggravated by exercise were not eligible for the study. 

This research was approved by the Bloorview Research Institute Ethics Board (eREB 

#2020-0305) and the University of Toronto. Written informed consent was obtained from 

each participant. 

To collect raw accelerometer data, the Polar H10 (Polar Electro, Finland) was con-

nected to the Polar Sensor Logger app (Jukka Happonen, available on the Google Play 

Store) via Bluetooth to log data at 200 Hz with a range of 16 G. 

Static validity of the Polar H10 accelerometer was assessed by holding the device 

against a level surface guide with each axis aligned to gravity for 30 s. Accelerometer data 

were averaged, then relative error between the accelerometer values and expected value 

(1 G) were computed. Since Kolmogorov-Smirnov normality tests reached significance, 

Wilcoxon rank sum tests were used to evaluate whether the static validity of the accel-

erometer changed after the study session, during which the accelerometer experienced a 

period of high-intensity movement. 

For testing under dynamic conditions, Polar H10 measurements were compared to 

the MetaMotionR (Mbientlab Inc., USA), an inertial measurement unit that has previously 

been validated against motion capture systems [11]. Data was logged directly on the Met-

aMotionR at 200 Hz with a range of 16 G. The MetaBase App (Mbientlab Inc., USA) was 

used to configure the MetaMotionR and transfer data. The Polar H10 and MetaMotionR 

were synchronized by tapping them on a table three times. Participants wore the Polar 

H10 around the chest as described in the device user manual [12]. The MetaMotionR was 

placed just below the Polar H10 on the participants’ torso using a skin-safe adhesive 

(Cover-Roll Stretch, BSN Medical, USA) directly on the skin, followed by the MetaMo-

tionR with a stronger tape overtop (Leukotape P, BSN Medical, USA) to minimize loosen-

ing of the adhesives and sensors as the participants started to sweat. 

After placing sensors and going through a brief warm-up, participants performed 

semi-structured tasks simulating anticipated movements in a sports-based assessment un-

der development [13]. During the study, participants performed 34 shuttle-runs in an 8 

m2 to 9 m2 space. The shuttle-run activity was layered with a cognitive task (e.g., touching 

buttons in a specific sequence) such that the following dynamic movements were elicited: 

walking, running, lunging, shuffling, stopping/pausing, changing direction, and acceler-

ating/decelerating [14]. Each study session lasted approximately two hours. 

Dynamic validity was assessed by calculating the Pearson’s correlation coefficient be-

tween the Polar H10 and MetaMotionR for each acceleration vector and the overall mag-

nitude under raw and filtered conditions [15–17]. Low-pass zero-lag 4th order Butter-

worth filters with differing cut-off frequencies (10 Hz, 20 Hz, 30 Hz, and 40 Hz) were 

examined. To explore the application of the sensor for activity recognition, commonly 

used features [1] were compared using Wilcoxon rank sum tests. Mean magnitude, root 

mean square (RMS) of magnitude, power of magnitude, and signal magnitude area (SMA) 

were calculated over 2 s intervals then compared using the root mean squared error 

(RMSE) between the features from each accelerometer and Wilcoxon rank sum tests. 
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3. Results & Discussion 

3.1. Participants 

Fifteen individuals (8F/7M) participated in the study. Table 1 summarizes the age 

ranges of the participants. Using the Godin-Shephard Leisure-Time Physical Activity 

Questionnaire, two participants were identified as inactive (score of less than 14), four 

were moderately active (score between 15 and 23), and nine were active (a score over 24) 

[18]. 

Table 1. Participant age and biological sex. 

Age  

(years) 

Sex 

Female Male 

18–24 5 3 

25–34 3 3 

34–55 0 1 

3.2. Static Validity 

The relative error between the Polar H10 reading and expected value (1 G) for each 

axis is outlined in Table 2. A Wilcoxon rank sum test comparing relative error before and 

after the high intensity activity found a significant difference for the Z axis (p = 0.006), but 

not the X (p = 0.36) or Y (p = 0.29) axes. 

Table 2. Static relative error (%) for each accelerometer axis before and after high intensity activity. 

Axis Before High Intensity Activity After High Intensity Activity 

X 3.053 (0.466) 2.929 (0.466) 

Y 4.288 (0.513) 4.255 (0.505) 

Z 2.862 (0.207) 2.620 (0.195) 

Under static conditions, the Polar H10 accelerometer had mean relative errors of 

2.620 % to 4.288 %. This indicates high static validity, as relative error was less than 5% 

for all axes [15,16]. While the difference between relative error before and after the sport-

like activity was statistically significant for the Z-axis (p = 0.006), the magnitude of the 

difference was minute (a change in RE of 0.252%) and is likely acceptable for most appli-

cations. 

3.3. Concurrent Validity during Motion 

Table 3 highlights the concurrent validity and RMSE for raw accelerometer data dur-

ing the sports-based task. The highest mean correlation was observed in the overall mag-

nitude (r = 0.954) while the lowest was in the y-axis (r = 0.888). The lowest RMSE was 

observed in magnitude (0.141 G), while the highest was in the z-axis (0.273 G). 

Table 3. Mean and standard deviations of correlation coefficient (r) and root mean squared error 

(RMSE) during motion. 

Axis r RMSE (G) 

X 0.891 (0.113) 0.231 (0.119) 

Y 0.888 (0.160) 0.182 (0.125) 

Z 0.909 (0.085) 0.273 (0.139) 

Magnitude 0.954 (0.046) 0.141 (0.069) 

Low-pass filtering at different cut-off frequencies led to minor decreases in correla-

tions (Table 4) and increases in RMSE (Table 5). While small, all these differences were 
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significant (Wilcoxon signed-rank test, p < 0.001). The largest change was seen at a cut-off 

frequency of 10 Hz, where the correlation for acceleration magnitude decreased from 

0.954 to 0.949 and RMSE increased from 0.141 G to 0.151 G. 

Table 4. Mean and standard deviations of correlation coefficient (r) for accelerometer data low-pass 

filtered at different cut-off frequencies.  

Axis 
Cut-Off Frequency 

40 Hz 30 Hz 20 Hz 10 Hz 

X 0.891 (0.232) 0.890 (0.144) 0.889 (0.145) 0.887 (0.146) 

Y 0.888 (0.160) 0.887 (0.160) 0.886 (0.160) 0.884 (0.162) 

Z 0.908 (0.085) 0.908 (0.086) 0.906 (0.086) 0.904 (0.088) 

Magnitude 0.954 (0.047) 0.953 (0.047) 0.952 (0.049) 0.959 (0.051) 

Table 5 shows a comparison of commonly used activity recognition features calcu-

lated from each accelerometer. Distributions for all features were non-normal (Kolmogo-

rov-Smirnov, p < 0.001) and Wilcoxon rank sum tests reached significance (p < 0.001 for all 

features). However, the RMSEs between the Polar and MetaMotionR features were less 

than 0.005 G for RMS and mean and 0.017 G for SMA. Power had the highest RMSE at 

0.112 G. 

Table 5. Comparison between Polar and MetaMotionR values for features commonly used in activ-

ity recognition. 

Feature Polar MetaMotionR RMSE 

Mean Magnitude (G) 
1.098  

(0.104) 

1.134  

(0.113) 
0.003 

Root Mean Square of Magnitude (G) 
1.163  

(0.162) 

1.215  

(0.113) 
0.004 

Power of Magnitude (n.u.) 
1.778  

(0.698) 

1.945  

(0.805) 
0.112 

SMA (G) 
1.524 

(0.229) 

1.618 

(0.233) 
0.017 

During dynamic sport-like tasks, the Polar H10 and MetaMotionR had mean corre-

lations between 0.888 and 0.954, reflecting a high to very high correlation between the 

accelerometer signals [19]. With correlations of over 0.7, concurrent validity was found to 

be sufficient for all axes and for the overall magnitude [15,16]. Filtering led to significant, 

but small decreases in concurrent validity. Commonly used activity recognition features 

(mean magnitude, RMS of magnitude, power of magnitude, and SMA) calculated with a 

window size of 2 s were found to be significantly different between the two devices. How-

ever, the magnitudes of the differences were small, especially when considering that the 

sensors were placed in slightly different locations. 

3.4. Limitations 

In addition to the slight offset between sensors, correlations between the accelerom-

eters may have been lowered if sensors (especially the tape-secured MetaMotionR) be-

came loose during exercise. While participants were instructed to inform research staff 

when this happened, correlations decreased in trials leading up to sensor adjustments. In 

this study, a preliminary validation focused on the correlation between the Polar H10 and 

MetaMotionR accelerometers as the desired application of the device was to measure ac-

celeration patterns during high intensity activity. Further investigation is needed to vali-

date the Polar H10 accelerometer for other purposes, such as measuring peak impacts 

during contact sports. 
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3.5. Comparisons with Previous Work 

With mean correlations of over 0.887 relative to the MetaMotionR, the Polar H10 ac-

celerometer performs similarly to other wearable-integrated accelerometers. When com-

paring the Gear S smartwatch (Samsung Electronics, Korea) accelerometer to the Acti-

graph GR3X+, Davoudi et al. [20] found that the devices had correlations over 0.89 during 

shaker table and treadmill tests and over 0.7 for other daily activities. Additionally, when 

comparing the MinimaxX S4 (Catapult Innovations, Australia) accelerometer to a motion 

analysis system, Wundersitz et al. [16] found that RMSE between the measures were 0.11 

G and 0.23 G during jogging and running tasks. Similarly, the RMSEs reported in the cur-

rent study ranged from 0.141 G to 0.273 G. 

4. Conclusions 

The findings of this research suggest that the accelerometer contained within the Po-

lar H10 can measure accelerations with adults during non-contact sports activities. While 

filtering the data may be beneficial in some applications, it had a minor impact on the 

concurrent validity and error. These findings open opportunities for future development 

and use of the Polar H10 as a reliable low-cost, consumer-grade heart rate monitor and 

accelerometer. 
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