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Cell spheroids
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Rapid formation of cell aggregates and spheroids induced by a “smart” boronic acid copolymer. ACS applied materials & interfaces DOI:  10.1021/acsami.6b07911

CELL SPHEROIDCELL SCATTERING

Cell-cell adhesion molecules (CAMs) and proteins, such as integrins and cadherins allow for spheroid formation  

Cell attachment is crucial for cell viability and proliferation



Spheroids fusion
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Rapid formation of cell aggregates and spheroids induced by a “smart” boronic acid copolymer. ACS applied materials & interfaces DOI:  10.1021/acsami.6b07911

Fusion of spheroids allows to create microtissues

This 3D microenvironment provides a rich microenvironment that better mimics physiological conditions 

compared with two-dimensional (2D) cell cultures



Normal fusion process
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Rapid formation of cell aggregates and spheroids induced by a “smart” boronic acid copolymer. ACS applied materials & interfaces DOI:  10.1021/acsami.6b07911

~48 hr

The traditional fusion process takes a long time
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Proposed model

Magnetite (Fe3O4) nanoparticles would generate the magnetic field gradient that is expected to accelerate the fusion process of magnetic spheroids



Mathematical model
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Navier -Stokes

CFD Module User’s Guide COMSOL Multiphysics
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Geometry
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a) 3D view Geometry spheroids, magnets, and environment configuration, and b) 2D Geometry spheroids, magnets, and 

environment as projected from the 3D geometry.



Evaluation of the models
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Mesh convergence 2D base model without magnetic field
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Mesh convergence with 17664 domain elements



2D Fusion model
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t=0d Volume fraction

t=4d Volume fraction

t=2d Volume fraction



Evaluation of the 2D model without magnetic field
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Fusion neck

Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation DOI:10.1002/term.291

13,981%



𝑖=1

𝑛

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑀𝑎𝑡𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

https://dx.doi.org/10.1002%2Fterm.291


Evaluation of the 2D model without magnetic field
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Percent of envelopment

Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation DOI:10.1002/term.291

16,1385%



𝑖=1

𝑛

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑀𝑎𝑡𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

https://dx.doi.org/10.1002%2Fterm.291


Evaluation of the 2D model without magnetic field
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Fusion angle

Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation DOI:10.1002/term.291

12,4827%
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𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑀𝑎𝑡𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

https://dx.doi.org/10.1002%2Fterm.291


Model validation with other materials
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Fusion neck

3D bioprinting of high cell-density heterogeneoustissue models through spheroid fusion within self-healing hydrogels DOI: 0.1038/s41467-021-21029-2

Vascular smooth muscle cells and 
endothelial cells lining

Normal human fibroblastCardiomyocytes and fibroblasts

Controlling Cell Position in Complex Heterotypic 3DMicrotissues by Tissue Fusion DOI: 10.1002/bit.22162
Fusion of Uniluminal Vascular Spheroids: A Model for Assembly of Blood Vessels DOI: 10.1002/dvdy.22161



Model validation with other materials
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Percent of envelopment

Fusion of Uniluminal Vascular Spheroids: A Model for Assembly of Blood Vessels DOI: 10.1002/dvdy.22161

Controlling Cell Position in Complex Heterotypic 3DMicrotissues by Tissue Fusion DOI: 10.1002/bit.22162

Vascular smooth muscle cells and 
endothelial cells lining

Normal human fibroblastCardiomyocytes and fibroblasts

3D bioprinting of high cell-density heterogeneoustissue models through spheroid fusion within self-healing hydrogels DOI: 0.1038/s41467-021-21029-2



Model validation with other materials
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Fusion angle

Vascular smooth muscle cells and 
endothelial cells lining

3D bioprinting of high cell-density heterogeneoustissue models through spheroid fusion within self-healing hydrogels DOI: 0.1038/s41467-021-21029-2

Fusion of Uniluminal Vascular Spheroids: A Model for Assembly of Blood Vessels DOI: 10.1002/dvdy.22161

Controlling Cell Position in Complex Heterotypic 3DMicrotissues by Tissue Fusion DOI: 10.1002/bit.22162

Normal human fibroblastCardiomyocytes and fibroblasts



Magnetic flux density norm

19Mesh convergence with 17664 domain elements

Mesh convergence 2D base model with magnetic field



Magnetic flux density norm
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The Magnetic Flux Density Norm is lower in

the center, so the spheroids will be pushed

to the center by an inverse force generated

by the magnetic medium.



Magnetic flux density norm
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2D Model with magnetic field
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t=0.5d  Volume fraction
t=1.5d  Volume fraction

t=1.8d  Volume fraction t=2.2d  Volume fraction

3D bioprinting of high cell-density heterogeneoustissue models through spheroid fusion within self-healing hydrogels DOI: 0.1038/s41467-021-21029-2

t=0d t=1d

t=2d t=4d



2D Model with magnetic field
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The Fusion accelerates in the second half of the process



Complex 2D structures
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Controlling Cell Position in Complex Heterotypic 3DMicrotissues by Tissue Fusion DOI: 10.1002/bit.22162
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Complex 2D structures
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Controlling Cell Position in Complex Heterotypic 3DMicrotissues by Tissue Fusion DOI: 10.1002/bit.22162

t=0d  Volume fraction t=0,5d  Volume fraction

t=0d Volume fraction t=0.5d Volume fraction t=1d Volume fraction

t=1.5d Volume fraction t=2d Volume fraction



Complex 2D structures
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Controlling Cell Position in Complex Heterotypic 3DMicrotissues by Tissue Fusion DOI: 10.1002/bit.22162

t=0d  Volume fraction t=0,5d  Volume fraction

The Magnetic Flux Density Norm is lower in the center, so the spheroids will be pushed to the

center by an inverse force generated by the magnetic medium.



Conclusions
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◉ Magnetized spheroid fusion reached a max. force of 6T for the magnetic field, which

induced cell-cell interactions.

◉ Fusion process was improved approximately 45-50% due to the magnetic field

gradient.

◉ The fusion process described:
○ a similar increase in spheroid size

○ presence of a bonding bridge after the first contact

○ a slow and constant fusion

○ The formation of a single oval spheroid.



Future work
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t=0d  Volume fraction

t=0d Volume fraction t=0.5d Volume fraction t=1d Volume fraction

Droplet merging on a lab-on-a-chip platform by uniform magnetic fields. DOI: 

10.1038/srep37671
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