

In silico study of spheroids fusion through magnetic field gradients

School of Engineering. ⁽¹⁾Department of Biomedical Engineering.

Cristian F. Rodriguez⁽¹⁾, Maria Alejandra Castilla-Bolanos⁽¹⁾, Laura Ortiz C. ⁽¹⁾, Kevin A. Giraldo R. ⁽¹⁾, Carolina Muñoz C. PhD ⁽¹⁾, Juan C. Cruz. PhD ⁽¹⁾

Cell attachment is crucial for cell viability and proliferation

CELL SCATTERING

Cell-cell adhesion molecules (CAMs) and proteins, such as integrins and cadherins allow for spheroid formation

This 3D microenvironment provides a rich microenvironment that better mimics physiological conditions compared with two-dimensional (2D) cell cultures

Rapid formation of cell aggregates and spheroids induced by a "smart" boronic acid copolymer. ACS applied materials & interfaces DOI: 10.1021/acsami.6b07911

The traditional fusion process takes a long time

Rapid formation of cell aggregates and spheroids induced by a "smart" boronic acid copolymer. ACS applied materials & interfaces DOI: 10.1021/acsami.6b07911

Proposed model

Magnetite (Fe₃O₄) nanoparticles would generate the magnetic field gradient that is expected to accelerate the fusion process of magnetic spheroids

Gauss' Law Ŭ			
∇B= 0		B=µ ₀ (H+M)	
$-\nabla \cdot (\mu_0 \nabla Vm - \mu_0 M) = 0$			
H= Magnetic field intensity		B= Magnetic flux	
	Sity	density	
M=Magn vector	etization	density $\mu_0 = \text{permeability}$	′

a) 3D view Geometry spheroids, magnets, and environment configuration, and b) 2D Geometry spheroids, magnets, and environment as projected from the 3D geometry.

RESULTS AND DISCUSSION

B Mesh convergence 2D base model without magnetic field

Mesh convergence with 17664 domain elements

Evaluation of the 2D model without magnetic field Percent of envelopment

Tissue spheroid fusion-based in vitro screening assays for analysis of tissue maturation DOI: 10.1002/term.291

3D bioprinting of high cell-density heterogeneoustissue models through spheroid fusion within self-healing hydrogels DOI: 0.1038/s41467-021-21029-2 Fusion of Uniluminal Vascular Spheroids: A Model for Assembly of Blood Vessels DOI: 10.1002/dvdy.22161

Model validation with other materials

Percent of envelopment

3D bioprinting of high cell-density heterogeneoustissue models through spheroid fusion within self-healing hydrogels DOI: 0.1038/s41467-021-21029-2

Fusion of Uniluminal Vascular Spheroids: A Model for Assembly of Blood Vessels DOI: 10.1002/dvdy.22161 Controlling Cell Position in Complex Heterotypic 3DMicrotissues by Tissue Fusion DOI: 10.1002/bit.22162

Model validation with other materials

Fusion angle

3D bioprinting of high cell-density heterogeneoustissue models through spheroid fusion within self-healing hydrogels DOI: 0.1038/s41467-021-21029-2

Fusion of Uniluminal Vascular Spheroids: A Model for Assembly of Blood Vessels DOI: 10.1002/dvdy.22161

The Magnetic Flux Density Norm is lower in the center, so the spheroids will be pushed to the center by an inverse force generated by the magnetic medium.

D 2D Model with magnetic field

6

The Fusion accelerates in the second half of the process

Complex 2D structures

Complex 2D structures

The Magnetic Flux Density Norm is lower in the center, so the spheroids will be pushed to the center by an inverse force generated by the magnetic medium.

Conclusions

- Magnetized spheroid fusion reached a max. force of 6T for the magnetic field, which induced cell-cell interactions.
- Fusion process was improved approximately 45-50% due to the magnetic field gradient.
- The fusion process described:
 - a similar increase in spheroid size
 - presence of a bonding bridge after the first contact
 - a slow and constant fusion
 - The formation of a single oval spheroid.

- Future work

Cristian F. Rodríguez MSc student cf.rodriguez@uniandes.edu.co

María Alejandra CastillaB PhD, student ma.castilla964@uniandes.edu.co

Laura Ortiz Calderon BSc student I.ortizc@uniandes.edu.co

Kevin Giraldo BS Biomedical engineer. ka.giraldo@uniandes.edu.co

Juan C. Cruz. PhD Associate professor jc.cruz@uniandes.edu.co

Carolina Muñoz. PhD Associate professor c.munoz2016@uniandes.edu.co

Johann Osma, PhD Associate professor jf.osma43@uniandes.edu.co