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=  ABSTRACT RESULTS

F.Iightless-l is a_unique mgmber of the gelsolin superfamily aI.oning six gelsolin homology d-omains_and IeL_Jc.ir)e- @)\@\ q? IN CONTRAST TO GELSOLIN THE GH DOMAINS OF Fli-l INFLUENCE
rich repeats. Flightless-I is an established regulator of the actin cytoskeleton, however, its biochemical activities

in actin dynamics are still largely elusive. To better understand the background of the biological functioning of . %9 | GD\? ®\@>\%> @?@?P | \ ACTIN DYNAMICS IN A Ca**-INDEPENDENT MANNER
Flightless-1 we studied the actin activities of Drosophila Flightless-I by in vitro bulk fluorescence spectroscopy HSFI' G1 | G2 | G3 G4 | G5 e = : A

and single filament fluorescence microscopy. Flightless-I inhibits polymerization by high-affinity (~nM) filament i 501 MW EGTA B W i ol e
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barbed end capping, moderately facilitates nucleation by low-affinity (~ uM) monomer binding and does not

sever actin filaments. %@Q@ Qﬁa @)\@D\@P?P@?P
Flightless-1 was found to interact with actin and affect actin dynamics in a calcium-independent fashion in vitro, MmFIi G1 G2 G3 Ga G5 1 G6
suggesting the lack of calcium-mediated activation and conformational change of protein. For the comparative

structural analysis of the six gelsolin homology domains (GH16) of gelsolin and Flightless-l, we used a

combination of biophysical and biochemical approaches. The use of external (8-anilinonaphthalene-1-sulfonic @%ﬁ)@??@%ﬁ) Q@\@Q@ @@
acid; ANS) fluorophores revealed that calcium-binding induces structural changes in gelsolin but the .

conformational behavior of Flightless-l GH16 was not significantly affected by the divalent cation. Our DmFI| G1 | G2 G3 G4 | G5 | G6
experimental findings are supported by bioinformatics analysis predicting that the sequence elements

responsible for Ca?*-activation of GSN are not conserved in Flightless-l GH16 and its structure is similarly rigid QQ
and organized as in case of gelsolin.
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Figure 4.

(A-B) Representative pyrenyl emission kinetics recorded in the absence or presence of Fli-l constructs (as indicated) and gelsolin
(GSN) and in the absence or presence of 1 mM EGTA (A) or 1 mM CaCl, (B). Conditions: 2.5 uM actin (5 % pyrenyl labelled). (C)
Kinetics of actin polymer disassembly as followed by the decrease in pyrenyl fluorescence emission in the absence or presence of
GST-Fli-l or GSN. Conditions: [actin] = 50 nM (50 % pyrenyl labeled), [GSN] = 5 nM, [GST-Fli-I] = 105 nM, [CaCl,] = 1 mM.

SEQUENCE BASED IN SILICO ANALYSIS OF GSN AND Fli-I
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Gelsolin (GSN) the eponymous member of the gelsolin-homology protein family possesses Ca%*-dependent 40 40 508
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actin activities, including nucleation, capping and severing. Ca**-activation of GSN is coupled to both local and S 350 5 13.2 26 742 3 350 15 26.4 52 148.4 9,06/ carnitdependoci
global conformational changes of the molecule. The binding of calcium ions activates gelsolin (GSN) by T 30! L 30 05 .
opening the three latches that stabilize the inactive structure. Early in this process, the tail latch must be S ol 5 E , ] s o
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conformation that enables the two halves of GSN to separate from each other. Subsequent opening of the QE) - GE, I O 16 Fli-l GH46 Fli-l LRR
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beginning and end points of the activation process, its mechanism remains largely speculative. i f T il S C
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