Sajjad Karamat, Walter M.F.Fabian, Juraj Kona

Introduction

The exact ionization state of biologically important organoselenium compounds, e.g. those involved in the catalytic cycle of peroxidases is still incompletely known.¹ As a first step to the modelling of catalytic mechanism of glutathione peroxidase, the pK_a – values of a series of selenols R-SeH, seleninic acids R-SeO₂H and selenenic acids R-SeOH were calculated by ab initio (MP2) and DFT (B3LYP) methods using a thermodynamic cycle.² Here we are presenting results for seleninic acids R-SeO₂H only.

The pK_a calculated on the basis of the thermodynamic cycle is expressed as

2.303 RT p $K_a = G_g (A^-) + G_g (H^+) - G_g (HA) + \Delta G_s (H^+) + \Delta G_s (A^-) - \Delta G_s (HA)$

where $HA = Ph-SeO_2H$ and $A^- = Ph-SeO_2^-$

Sajjad Karamat, Walter M.F.Fabian, Juraj Kona

Acknowledgment

S.K. thanks the Higher Education Commission of Pakistan for a scholarship.

Sajjad Karamat, Walter M.F.Fabian, Juraj Kona

Computational Details

All computations have been performed with the Gaussian 03 suite of programs.³ Four different model chemistries were employed, B3LYP/6-31G(d,p), MP2/6-31G(d,p), B3LYP/aug-cc-pVDZ, MP2/aug-cc-pVDZ.

All structures were characterized by frequency calculations as true minima and thermal corrections to Gibb's free energy are added as unscaled. Solvent effects (H₂O) were estimated by the single-point IEF-PCM procedure.⁴ The pK_a values were calculated according to the above equation and experimental value for ΔG_s (H⁺) was taken as -264.0 kcal/mol.⁵ The value for G_g (H₊) was taken from Sackur-Tetrode equation as -6.28 kcalmol⁻¹. The pK_a values are calculated at a temperature of 298.15 K.

Sajjad Karamat, Walter M.F.Fabian, Juraj Kona

Results and Discussions

The experimental values of seleninic acids R-SeO₂H as well as those calculated by four different model chemistries are given in Table 1. The correlation between the experimental and theoretical p K_a values is given in Figure 1.

Table 1

		B3LYP	MP2	B3LYP	MP2
	Exp.Value ⁶	6-31G(d,p) Calc. Value	6-31G(d,p)	aug-cc-pVDZ	aug-cc-pVDZ
Ph-SeO ₂ H	4.8	24.1	23.8	12.4	10.1
<i>p</i> -CH ₃ - Ph-SeO ₂ H	4.9	24.4	24.0	12.7	10.2
<i>m</i> -CH ₃ - Ph-SeO ₂ H	4.8	24.5	24.0	12.8	10.3
<i>p</i> -F- Ph-SeO ₂ H	4.5	23.7	23.3	12.0	9.8
<i>m</i> -F- Ph-SeO ₂ H	4.3	23.1	22.7	11.6	9.4
<i>p</i> -CI- Ph-SeO ₂ H	4.5	23.1	23.0	11.8	9.6
<i>m</i> -Cl- Ph-SeO ₂ H	4.5	22.5	22.4	11.3	9.2
<i>p</i> -Br- Ph-SeO ₂ H	4.5	23.1	22.8	11.8	9.6
<i>m</i> -Br- Ph-SeO ₂ H	4.4	22.5	22.3	11.5	9.2
<i>p</i> -CH ₃ O- Ph-SeO ₂ H	5.1	26.0	24.9	14.1	11.4
<i>m</i> - CH ₃ O- Ph-SeO ₂ H	4.6	24.0	23.6	12.7	10.2
<i>m</i> -NO ₂ - Ph-SeO ₂ H	4.1	21.3	21.4	10.7	8.5
o- C ₆ H ₅ - Ph-SeO₂H	4.7	24.7	25.5	13.3	11.0

None of the methods used is capable to provide a reasonable agreement with the experimental values. Additions of diffuse functions significantly improve the results. Reasonable trends but not absolute pK_a values are obtained as shown in Figure 1. The correlation seems to be better described by B3LYP/6-31G(d,p) than MP2/aug-cc-pVDZ as indicated by the correlation coefficient R². The absolute values are better described by MP2/aug-cc-pVDZ than B3LYP/6-31G(d,p) but at much expense. *p*-CH₃-Ph-SeO₂H and *o*-C₆H₅-Ph-SeO₂H show large deviation.

Figure 1 The correlation between the experimental and theoretical pK_a (The correlation coefficient R² for B3LYP/aug-cc-pVDZ and MP2/6-31G(d,p) is 0.8252 and 0.7156 respectively)

Sajjad Karamat, Walter M.F.Fabian, Juraj Kona

References

(1) (a) Cardey, B.; Enescu; M. *J. Phys. Chem. A* **2007**, *111*, 673. (b) Pearson, J. K.; Boyd, R. J. *J. Phys. Chem. A* **2006**, *110*, 8979. (c) Prabhakar, R.; Vreven, T.; Frisch, M. J.; Morokuma, K.; Musaev, D. G. *J. Phys. Chem. B* **2006**, *110*, 13608. (d) Benkova, Z.; Kona, J.; Gann, G.; Fabian, W. M. F. Int. J. Quant. Chem. **2002**, *90*, 555.

(2) (a) Hudaky, P.; Perczel, A. *J. Phys. Chem. A* 2004, *108*, 6195. (b) Lim, C.; Bashford, D.; Karplus, M. *J. Phys. Chem.* **1991**, *95*, 5610. (c) Gherman, B. F.; Tolman, W. B.; Cramer, C. J. *J. Comp. Chem.* **2006**, *27*, 1950.

(3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian O3, revision B.04; Gaussian, Inc.; Wallingford, CT, **2004**.

(4) Tomasi, J.; Mennucci, B.; Cances, E. J. Mol. Struct. (THEOCHEM) 1999, 464, 211-226.

(5) Mejias, J. A.; Lago S. J. Chem. Phys 2000, 113, 7306-7316.

(6) McCullough, J. D.; Gould, E. S.; J. Am. Chem. Soc. 1949, 71, 674.