[e003]

Microwave-assisted reactions of 4-[(4-oxochromen-3yl)methylene]-2-phenyl-1,3-oxazol-5(4*H*)-ones with nitrogen bases

Renata Gašparová¹*, Eva Haršányiová¹ and Margita Lácová²

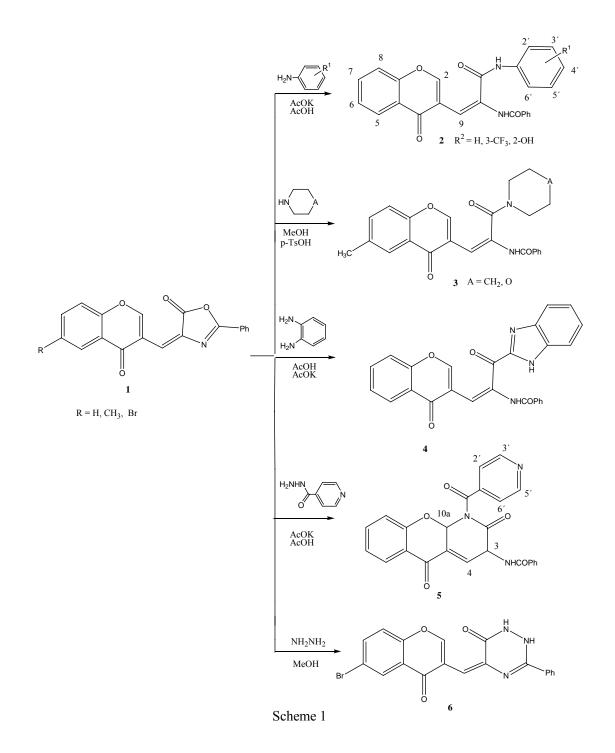
¹Department of Chemistry, Faculty of Natural Sciences, University of St. Cyril and Methodius, Námestie Jozefa Herdu 2, Sk-917 01 Trnava, Slovakia

²Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina CH-2, SK-842 15 Bratislava, Slovakia

* Author to whom correspondence should be addressed; e-mail: gasparor@ucm.sk

Abstract: The microwave-assisted reactions of 4-[(6-R-4-oxochromen-3-yl)methylene]-2-phenyl-1,3-oxazol-5(4*H*)-ones**1a-1c**with*N*-bases are described. Substituted benzamides**2a-2c**were prepared by reaction of**1a**with primary amines in the presence of acetic acid and potassium acetate. Benzamides**3a**and**3b**were synthesized by reaction of**1b**with piperidine and morpholine, respectively. Oxazolone**1**reacted with*o*-phenylenediamine to give benzoimidazole derivative**4**. 3-Benzamido-1-[(pyridin-4-yl)carboxamido]-2,5-dioxo-3,10a-dihydro-2*H*-chromeno[2,3-*b*]pyridine**5**was prepared by reaction of**1a**with isoniazid in acetic acid and <math>5-[(6-bromo-4-oxochromen-3-yl)methylene]-3-phenyl-2,5-dihydro-1*H*-[1,2,4]triazine-6-one**6**was synthesized by reaction of**1c**with hydrazine in methanol.

Keywords: microwave irradiation, 1,3-oxazol-5(4H)-one, N-bases


Introduction

1,3-Oxazol-5(4*H*)-one derivatives react easily with nitrogen nucleophiles, therefore they can serve as a convenient reagents for synthesis of new nitrogen heterocycles. They react with ammonia to give tetrazoles [1], with primary or secondary amines to give imidazoles or acrylamides [2]. Reactions of 1,3-oxazol-5(4*H*)-ones with hydrazine led to pyridazine or oxadiazole derivatives [3]. 1,2,4-Triazines were prepared by reaction of 1,3-oxazol-5(4*H*)-ones with phenylhydrazine [2]. Finally, the reaction of 1,3-oxazol-5(4*H*)-ones with o-phenylenediamine gave either benzimidazole or imidazole derivatives [4,5]

Results and discussion

N-{1-[(R-4-phenylamino)carbonyl]-2-(4-oxochromen-3-yl)vinyl}benzamides 2a - 2c were synthesized in 50 - 78 % yields by microwave-assisted reaction of 1a with substituted

anilines in acetic acid in the presence of potassium acetate with a power output of 90 W over the period given in Table 1. The ¹H NMR spectra of compounds **2a-2c** displayed signals of H-2 protons in the 8.68-8.73 ppm range and signals due to CH= bonded protons in 6.79 - 6.86 ppm range (Table 2).

 $N-[2-(6-methyl-4-oxochromen-3-yl)-1-{[(piperidn-1-yl)carbonyl]vinyl}benzamide 3a and <math>N-[2-(6-methyl-4-oxochromen-3-yl)-1-{[(morpholin-4-yl)carbonyl]vinyl}benzamide 3b were prepared in 80 and 98% yields by microwave-assisted reaction of 1b with piperidine or$

morpholine in methanol in the presence of p-toluenesulfonic acid with a power output of 90 W over the period given in Table 1. ¹H NMR spectra of compounds **3a**, **3b** displayed the signals of H-2 protons at 8.30 and 8.71 ppm while the signal of CH= bonded protons at 5.45 and 5.82 ppm, respectively (Table 2).

N-[1-(1*H*-Benzoimidazol-2-yl)-2-(4-oxochromen-3-yl)-vinyl]benzamide **4** was synthesized in 76% yield by microwave-assisted reaction of **1a** with o-phenylenediamine in acetic acid – potassium acetate medium. The reaction needed 10 min to completion at 160 W power output (Table 1). The ¹H NMR spectrum of **4** displays signal of H-2 bonded proton at 8.65 ppm and signal of CH= bonded proton at 6.89 ppm (Table 2).

3-Benzamido-1-[(pyridin-4-yl)carboxamido]-2,5-dioxo-3,10a-dihydro-2*H*chromeno[2,3-*b*]pyridine **5** was synthesized in 60% yield by microwave-assisted reaction of **1a** with isoniazid in acetic acid in the presence of potassium acetate with a power output of 90 W for 10 min (Table 1). The ¹H NMR spectrum of **5** displays singlet signal of H-10a proton at 7.46 ppm range and signals due to H-3 and H-4 protons in 7.61 – 7.56 ppm range (Table 2).

When **1c** was irradiated in microwave oven with hydrazine at 90W for 10 min, 5-[(6-bromo-4-oxochromen-3-yl)methylene]-3-phenyl-2,5-dihydro-1*H*-[1,2,4]triazin-6-one**6**was prepared in 51% yield. The ¹H NMR spectrum of**5**displays singlet signal of H-2 at 8.76 ppm and signal of CH= bonded proton at 6.99 ppm (Table 2).

Experimental Part

All experiments were performed inWhirpool M401 type microwave oven. The apparatus was adapted for laboratory applications – n-hexane was used as coolant for the condenser. ¹H NMR spectra were obtained on a 300 MHz spectrometer VARIAN GEMINI 200 in DMSO-d₆ with tetramethylsilane as an internal standard. Melting points of products were determined on a Kofler hot plate apparatus and are uncorrected. All solvents were predistilled and dried appropriately prior to use. The course of reactions was monitored by TLC chromatography in ethyl acetate / n-hexane. The protocol in [6] was followed for the synthesis of oxazolones **1**.

General procedure

Synthesis of 2a-2c, 4, 5

The mixture of 4-[(4-oxochromen-3-yl)methylene]-2-phenyl-1,3-oxazol-5(4H)-one (**1a**) (0.3 g, 0.95 mmol), substituted aniline (*o*-phenylenediamine or isoniazid) (0.95 mmol) and catalytic amount of freshly fused potassium acetate in acetic acid (5 ml) was irradiated in

microwave oven at 90W (160W for 4) for time period, given in Table 1. After cooling, the solid product was filtered off, dried and crystallized from ethanol.

Compound	R	Formula	Мр	Yield	React.
	$\mathbf{R}^{1}(\mathbf{A})$	Mw	(°C)	(%)	time (min.)
2a	H H	$\begin{array}{c} C_{25}H_{18}N_2O_4\\ 410.4\end{array}$	231-234	78	5
2b	Н 3-CF ₃	$\begin{array}{c} C_{26}H_{17}F_{3}N_{2}O_{4}\\ 478.4\end{array}$	222-225	76	6
2c	Н 2-ОН	$\begin{array}{c} C_{25}H_{18}N_2O_5\\ 426.4\end{array}$	130-132	50	8
3a	CH ₃ (CH ₂)	C ₂₅ H ₂₄ N ₂ O ₄ 416.5	225-230	98	5
3b	CH ₃ (O)	C ₂₄ H ₂₂ N ₂ O ₅ 418.4	248-250	80	6
4	Н -	C ₂₅ H ₁₇ N ₃ O ₃ 407.1	152-156	79	10
5	Н	$\begin{array}{c} C_{25}H_{18}N_4O_5\\ 410.4\end{array}$	315-318	60	10
6	Br -	C ₁₉ H ₁₂ BrN ₃ O ₃ 410.2	260-265	51	10

Table 1 Characteristic data of compounds 2-6

Synthesis of 3a, 3b

The mixture of 4-[(6-methyl-4-oxochromen-3-yl)methylene]-2-phenyl-1,3-oxazol-5(4H)-one (**1b**) (0.3 g, 0.91 mmol), piperidine (or morpholine) (0.91 mmol) and catalytic amount *p*-toluenesulfonic acid in methanol (5 ml) was irradiated in microwave oven at 90W for time period, given in Table 1. After cooling, the solid product was filtered off, dried and crystallized from ethanol.

Synthesis of 6

The mixture of 4-[(6-bromo-4-oxochromen-3-yl)methylene]-2-phenyl-1,3-oxazol-5(4*H*)-one (**1c**) (0.3 g, 0.76 mmol), hydrazine (0.03g, 0.94 mmol) in methanol (4 ml) was irradiated in microwave oven at 90W for time period, given in Table 1. After cooling, the solid product was filtered off, dried and crystallized from ethanol.

 Table 2.
 ¹H NMR spectra (DMSO-d₆)

2a	10.41 (s, 1H, NH); 10.19 (s, 1H, NH); 8.71 (s, 1H, H-2); 8.19-8.16 (dd, 1H, ³ J=6.9 Hz,
	^{4}J =1.6 Hz, H-5); 7.99-7.97 (m, 2H, H-2", H-6"); 7.89-7.87 (m, 1H, ^{3}J =6.9 Hz, ^{4}J =1.64
	Hz, H-7); 7.73-7.69 (m, 3H, H-8, H-2', H-6'); 7.61-7.53 (m, 5H, H-6, H-3', H-5', H-3",
	H-5"); 7.36-7.30 (m, 1H, H-4"); 7.11-7.06 (m, 1H, H-4'); 6.79 (s, 1H, H-9).
2b	10.52 (s, 1H, NH); 10.49 (s, 1H, NH); 8.73 (s, 1H, H-2); 8.19-8.16 (m, 2H, H-2", H-6");
	7.99-7.95 (m, 3H, H-2', H-4', H-5); 7.90-7.84 (m, 1H, ${}^{3}J$ =7.2 Hz, ${}^{4}J$ =1.5 Hz, H-7); 7.73-
	7.71 (d, 1H, H-8, ³ <i>J</i> =8.4 Hz); 7.62-7.54 (m, 5H, H-5', H-6', H-3", H-4", H-5"); 7.45-7.43
	$(d, 1H, H-6, {}^{3}J=8.4 Hz); 6.81 (s, 1H, H-9).$
2c	10.45 (s, 1H, OH); 10.00 (s, 1H, NH); 9.85 (s, 1H, MH); 8.68 (s, 1H, H-2); 8.23-8.21
20	(m, 3H, H-5, H-2", H-6"); 7.62-7.69 (m, 7H, H-6, H-7, H-8, H-3', H-4', H-5', H-6');
	(in, 511, 11-5, 11-2, 11-6), 7.02-7.09 (in, 711, 11-6, 11-7, 11-6, 11-5, 11-5, 11-6), 7.43-7.31 (m, 3H, H-3", H-4", H-5"); 6.86 (s, 1H, H-9).
3a	
за	11.16 (s, 1H, NH); 8.71 (s, 1H, H-2); 7.98-7.94 (m, 3H, H-5, H-2", H-6"); 7.71-7.55 (m, 5H, H, 7, H, 8, H, 2", H, 4", H, 5"); 5.82 (a, 1H, H, 0); 2.55, 2.40 (m, 4H, CH); 2.40 (a, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H
	5H, H-7, H-8, H-3", H-4", H-5"); 5.82 (s, 1H, H-9); 3.55-3.49 (m, 4H, CH ₂); 2.49 (s, 3H, CH ₂); 1.58 + 56 (s, 2H, CH ₂); 2.49 (s, 3H, CH ₂); 2.49 (s, 3
	CH ₃); 1.58-1.56 (m, 6H, CH ₂).
3 b	12.17 (s, 1H, NH); 8.14-8.11 (m, 3H, H-5. H-2", H-6"); 8.30 (s, 1H, H-2); 7.58-7.48 (m,
	5H, H-7. H-8. H-3", H-4", H-5"); 5.45 (s, 1H, H-9); 3.79-3.63 (m, 8H, CH ₂); 2.51 (s, 3H,
	CH ₃).
4	12.63 (s, 1H, NH); 10.30 (s, 1H, NH); 8.65 (s, 1H, H-2); 8.16. 8.14 (d, 1H, H-5. ³ J=8.8
	Hz); 8.06-7.95 (m, 2H, H-2", H-6"); 7.68-7.39 (m, 7H, H-4', H-7', H-6, H-7, H-8, H-5',
	H-6'); 7.23-7.19 (m, 3H, H-3", H-4", H-5"); 6.89 (s, 1H, H-9).
5	11.94 (s, 1H, NH); 9.85 (s, 1H, NH); 8.85-8.83 (dd, 2H, H-3', H-5'; ³ J=6.9 Hz, ⁴ J=1.5
	Hz); 8.21-8.18 (dd, 1H, H-6, ³ J=6.6 Hz, ⁴ J=1.8 Hz); 8.13-8.09 (dd, 2H, H-2', H-6',
	³ <i>J</i> =6.6 Hz, ⁴ <i>J</i> =1.5 Hz); 7.94-7.88 (tt, 1H, H-7); 7.81-7.76 (m, 4H, H-2", H-6", H-8, H-9);
	7.61-7.56 (m, 5H, H-3. H-4. H-3", H-4", H-5"); 7.46 (s, 1H, H-10a).
6	10.56 (bs, 2H, NH); 8.76 (s, 1H, H-2); 8.15-8.01 (m, 3H, H-5, H-7, H-8); 7.70-7.47 (m,
-	5H, Ph); 6.99 (s, 1H, H-9).
L	

Acknowledgement: The authors are grateful for financial support to the Slovak Research and Development Agency by way of project No. APVT-20-005204 and to the VEGA Grant Agency of Slovak Ministry of Education by way of project No. 1/3584/06.

References

- [1] Behringer H., Grimme W.: Chem. Ber., 92, 1959, 2967-2972.
- [2] Ghosh C. K., Bandyopadhyay C.: Indian J. Chem., 23B, 1984, 1048 1053.
- [3] Hamad A. S. S., Hashem A. I.: *Molecules*, 5, 2000, 895 907.
- [4] Tikdari A. M., Mukerjee A. K.: J. Prakt. Chem., 330, 1988, 647 649.
- [5] Girges M. M., El.Zahab M. M. A., Hanna M. A.: Collect. Czech. Chem. Commun., 54, 1989, 1096 1103.
- [6] Fitton A. O., Frost J. R., Suschitsky H., Houghton P. G.: Synthesis 1977, 133 135.