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Abstract: In the field of non-covalent interactions, there has always been a great interest in finding 

the appropriate methodology to analyze bond energies and properties. There are multiple ap-

proaches; however, those based on symmetry adapted perturbation theory (SAPT) are interesting 

for two different reasons: quality of the interaction energy and how it is obtained. Total interaction 

energies are computed in SAPT as the sum of the electrostatic, repulsive, inductive and dispersive 

components. This provides enormous information about the intimate nature of intermolecular in-

teractions. The performance of a variety of symmetry adapted perturbation theory (SAPT) methods 

for describing non-covalent interactions has been tested in several studies. The appropriate level 

depends to a certain degree on the nature of the interaction and the extent of the database, however, 

there is a methodological combination that can be considered as a reference. The SAPT2+(3)δMP2 

truncation combined with the aug-cc-pVTZ basis set offers an outstanding performance for the ma-

jority of non-covalent complexes. This methodology produces interaction energies of excellent qual-

ity with low relative errors and little error spread so it can be adopted as a methodology to obtain 

reference energies for most applications of interest in chemistry and biochemistry. The problem that 

SAPT2+(3)δMP2/aug-cc-pVTZ faces is the computational resources demand. These requirements 

grow enormously with size so that it soon becomes unfeasible for most systems of interest in bio-

chemistry. When the computational cost is prohibitively high it has been suggested the use of 

SAPT2+ level in combination with the jun-cc-pVDZ basis set. This methodology is known to give 

remarkable results at a reduced computational cost. In this work, the goodness of the SAPT2+ meth-

odology to produce interaction energies of non-covalent systems is explored using the so-called 

blind database. This database consists on a set of dimers bearing different type of interactions at 

equilibrium and non-equilibrium distances. Likewise, the SAPT2+/aug-cc-pVDZ methodology is 

employed to describe a set of prototypical interactions found in biochemical systems involving sug-

ars, proteins and nucleic acids. 
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1. Introduction 

Life as we know it is largely conditioned by the characteristics of non-covalent inter-

actions, so a deep knowledge of their workings can provide tools for understanding and 

harnessing the processes that sustain it. Non-covalent Interactions play a pivotal role in 

biochemistry [1–3] governing function through the binding between complementary sub-

strates and receptors in crucial processes such as [4–8] protein-ligand recognition [7,9] 

drug-receptor binding [10–14] or DNA base-pairing [15,16] among others, [17–19] and de-

termining key aspects of biomolecular structure, properties or folding [20–26]. 
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Over the years, many theoretical and experimental studies have been carried out in 

order to understand and control the intimate nature of the interactions between biologi-

cally relevant molecules or fragments [27–35]. Since their early days, quantum mechanics 

and electronic structure methods have contributed enormously to the study of non-cova-

lent bonds in biomolecules, [36–44] as reflected in the many different approaches that can 

be found in literature [45–50]: from studies about the factors governing these interactions 

to those concerned with determining what methodology provides the most reliable and 

robust information for the study of non-covalent interactions. [51–56] In the latter case, 

the use of databases providing a set of benchmark/reference values has greatly facilitated 

the work, allowing a discrete set of systems to be employed for testing the performance 

of any given method [27,56]. 

Different databases have been specifically built for the study of non-covalent interac-

tions [57–61], such as those recently developed by Jan Rezác et al. for different purposes 

(hydrogen bond, repulsive contacts, dispersive systems, and σ-hole interactions, among 

others) [51,52,62]. Besides, there are more established databases with specific interactions 

as their target, such as the X40 database for interaction between halogenated molecules 

[55], the A24 for small non-covalent complexes [63], or even the L7 database [64], which 

includes large non-covalent systems. Additionally, there are also some databases that fo-

cus on interactions relevant to the field of biochemistry, such as the well-known S66 data-

base made up of systems that model biomolecular interactions [27,57], sets of molecular 

conformations of peptides such as Peptide_FGG54 and Peptide_WGG54, databases of 

peptides and macrocyclic compounds such as MPCONF [65,196] or the PLF547 database 

[67] including interactions between systems such as protein fragments and ligands rele-

vant to computer-aided drug design, among others [54,66,67].  

These databases provide a set of reference values against which the general perfor-

mance of different methodologies can usually be tested, as it is often the case of semiem-

pirical and density functional theory methods [68–72]. The behavior of wavefunction 

methods can also be tested in their different implementations, as it has been the case of 

MBPT methods [73–76], strategies based on the Local Pair Natural Orbitals approach [77–

82] or perturbative methods such as those derived from symmetry-adapted perturbation 

theory (SAPT) [83,84]. It is worth noting that, among these databases, the S66 database has 

become the most widely employed for testing a large variety of methods, allowing a direct 

comparison about the performance of the different approaches used [68–72,85–89]. 

Among the assortment of methods available for the study of non-covalent interac-

tions, those based in SAPT are specially interesting due to the way they treat interaction 

energies. SAPT methods obtain the interaction energy as a sum of different contributions 

that can be related to physical components of the interaction, such as electrostatic, repul-

sion, induction and dispersion [37,90,91]. By means of these contributions they allow us 

to delve into the nature of non-covalent interactions and rationalize the effects that differ-

ent orientations or substitutions have on each component of the interaction energy. This 

in-depth understanding of how each component contributes to the global interaction en-

ergy can be harnessed to provide predictive power in the design of new structures and 

control in processes. 

However, studies that systematically apply these methodologies to biomolecular da-

tabases are scarce [92–97]. The largest study of the efficiency and performance of SAPT 

methods for interaction energies was carried out in 2014 by Parker et al. [90] who analyzed 

the quality of different SAPT approaches with different basis sets using several databases; 

namely S22, NBC10, HBC6 and HSG.  

In the context of our research on the use of SAPT to describe non-covalent interac-

tions, the performance of different SAPT truncations will be tested using the so-called 

blind database [98]. This contains a large set of systems bearing C, H, O and N atoms with 

both equilibrium and non-equilibrium geometries. We especially sought to study whether 

the SAPT2+/aug-cc-pVDZ methodology is capable of producing adequate interaction en-

ergies in various spatial configurations bearing different intermolecular interactions 
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relevant to the biochemistry field. Additionally, the performance of some SAPT ap-

proaches will be assessed using three model complexes representative of the interaction 

between DNA bases, the interactions in proteins and the interactions between sugars and 

proteins. 

2. Computational Details  

Methods based on Symmetry Adapted Perturbation Theory give the interaction en-

ergy of a dimer as a sum of different components that can be associated to physical con-

tributions such as electrostatics, repulsion, induction and dispersion [37,90,91]. The inter-

action energy can be written as:  

𝐸𝑖𝑛𝑡 = ∑ ∑ (𝐸𝑝𝑜𝑙

(𝑖𝑗)
+ 𝐸𝑒𝑥𝑐ℎ

(𝑖𝑗) )

∞

𝑗=0

∞

𝑖=1

 , (1) 

where i indicates the order in the perturbation theory with respect to the intermolecular 

potential while j indicates the order with respect to the intramolecular electronic correla-

tion. The polarization energies are identical to the corrections obtained in the conventional 

Rayleigh-Schrödinger theory while the exchange terms arise from using an antisymme-

trizer that forces the dimer wavefunction to have the correct symmetry (antisymmetrized 

wave function) [99,100]. Since the interaction energy in the SAPT formalism is expanded 

as a series of contributions, it can be truncated including different terms, leading to a series 

of MBPT-SAPT approaches of different accuracy, though low order truncations are gen-

erally used [90]. For a detailed description of the different terms of the MBPT-SAPT ap-

proaches employed, the reader is encouraged to consult the work of Parker et al. [90] or 

the review of Patkowski, K. [91]. All MBPT-SAPT calculations in this work have been per-

formed using PSI4 1.3.2 software [101].  

Thus, interaction energies have been obtained using CCSD(T) at the estimated com-

plete basis set (CBS) limit by using the compound method described below: 

∆𝐸𝐶𝐶𝑆𝐷(𝑇)(𝐶𝐵𝑆) = ∆𝐸𝑀𝑃2
𝑐𝑜𝑟𝑟(𝐶𝐵𝑆) + 𝛿𝐶𝐶𝑆𝐷(𝑇) + ∆𝐸𝐻𝐹

(𝐶𝐵𝑆)
, (2) 

In this approach the MP2 correlation energy and the Hartree-Fock energy are extrap-

olated to the CBS limit using the Halkier and Helgaker extrapolation procedure [102,103] 

with the aug-cc-pVTZ and aug-cc-pVQZ basis sets [104,105]. The resolution of identity 

approach is used [106] in all MP2 calculations using the corresponding auxiliary basis sets. 

The δCCSD(T) term is evaluated as the difference in correlation energy between CCSD(T) 

and MP2 obtained with the heavy-aug-cc-pVDZ basis set (no diffuse functions on hydro-

gen atoms). All interaction energies have been corrected from basis set superposition error 

by using the counterpoise method [107]. These calculations have been carried out with 

ORCA 5.0 [108].  

3. Results 

The analysis will start using the blind database created in 2016 [98]. Specifically, this 

set of compounds is buildup of 10 different dimers with sizes ranging from 6 to 32 atoms. 

The complete database consists of 80 points obtained by scanning the distances in the an-

alyzed complexes, separating the centers of mass from the position of the energy mini-

mum. In this way, both equilibrium configurations and non-equilibrium spatial arrange-

ments are included considering both shorter and longer distances. The systems used are 

the following: water dimer, ethanol dimer, nitromethane dimer, methylformate dimer, 

benzene-water dimer, benzene-methane dimer, imidazole dimer, nitrobenzene dimer, 1,1-

diamino-2,2-dinitroethylene (hereinafter FOX7) dimer, and ethylene dinitramine (hereaf-

ter EDNA). 
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Figure 1. systems included in the blind database. The colored square around each system shows the 

nature of the complex analyzed in the minimum energy configuration. Electrostatic dominated com-

plexes are shown in blue while dispersion systems are represented in magenta. 

The original study [98] includes the comparison of 13 different methodologies (in-

cluding SAPT-DFT) with respect to CCSD(T)/CBS energies but no mention is made of any 

of the MBPT-SAPT truncations that are the focus of this work. Thus, we have calculated 

the interaction energies for these systems with SAPT2+(3)δMP2/aug-cc-pVTZ and 

SAPT2+/aug-cc-pVDZ and represented the MAD of the resulting 15 methods in Figure 2.  

 

Figure 2. Representation of the MAD (kJ/mol) obtained in the blind database for 15 different meth-

odologies. The color code used serves to group the methodologies according to their nature: dark 

blue (MBPT-SAPT), light blue (DFT-SAPT), fuchsia (MBPT) and green (DFT). MBPT-SAPT results 

are obtained in this work while the rest of the values are taken from the literature [98]. 

As can be seen in Figure 2, with a MAD of 0.56 kJ/mol, SAPT2+(3)δMP2/aug-cc-pVTZ 

provides the best results, confirming its robustness for the study of non-covalent interac-

tions. Likewise, it should be noted that the SAPT2+/aug-cc-pVDZ methodology, which 

has a reduced cost compared to the best SAPT truncation, occupies the fourth position 

with only 0.14 kJ/mol higher MAD. It is important to highlight that among the six meth-

odologies with a MAD under 1 kJ/mol, three of them are SAPT methodologies. In Table 1 

the main statistical parameters for the best methodologies can be found.  

These results are indicative of the quality of interaction energies provided by SAPT 

methodologies in general and especially by the SAPT2+(3)δMP2/aug-cc-pVTZ approach. 

Of the statistical parameters collected in Table 1, the MAPE values, which are very 

high, are particularly noteworthy. If only this statistical parameter is analyzed in the 16 



Chem. Proc. 2022, 4, x FOR PEER REVIEW 5 of 11 
 

 

methodologies compared in this study, we can see that the MAPE is between 11.44% of 

the DFT LC-ωPBE-D3 method and 59.14% of the wdW-DF2 method. 

Table 1. main statistical parameters obtained in the blind database using different methodologies 

that produces MAD values lower than 1 kJ/mol. All values are expressed in kJ/mol except for MAPE, 

whose value is a percentage. 

 SAPT2+(3) 

δMP2 aVTZ 

LC-ωPBE-

D3 
SAPT-(DFT) 

SAPT2+ 

δMP2 VDZ 
B3LYP-D3 

LC-gauBOP 

+LRD 

MAD 0.559 0.633 0.688 0.699 0.705 0.970 

RMSE 0.983 1249 1535 1699 1884 2207 

MAPE 15,050 11,443 24,379 21,226 29,506 32,973 

MSiE −0.270 0.073 0.115 −0.187 0.270 0.513 

If the best of all methodologies, SAPT2+(3)δMP2/aVTZ is taken and the results are 

analyzed in detail, it is possible to verify that this statistical parameter is largely affected 

by the poor values obtained for two points out of the 80 analyzed: benzene-methane dimer 

R = 3280 Å  with an error of 744.1% and in the nitrobenzene dimer R = 2.900 Å  with a 

percentage error of 91.1%. Such high errors may be a consequence of the small values of 

the reference energies that makes small energy differences being large in percentage. 

In any case, the global behavior of SAPT2+(3)δMP2/aVTZ and SAPT2+/aug-cc-pVDZ 

is very good. Both methodologies have proven to provide very good results in systems of 

great structural diversity not only in the nature of the functional groups but also in their 

composition. The good results are not only limited to the minimum energy position, since 

excellent results are obtained for the interaction energy in non-equilibrium geometries, 

which gives this methodology even more robustness and makes it the methodology of 

choice (if the size of the system allows it) to study new unknown complexes. 

Application to Systems of Biological Interest 

After testing the performance of the different SAPT methods against the blind data-

base, a simple application study has been carried out analyzing the interaction in three 

complexes representative of the interaction between DNA bases, the interactions in pro-

teins and the interactions between sugars and proteins. The selected systems are the ade-

nine-thymine dimer in a Watson-Crick arrangement (A-T) [53], a phenalanine interaction 

with a peptide bond (F49-PB) [53], and a fucose-indol (FI) dimer [109]. The structures of 

these dimers have been taken from literature, and their properties (geometrical arrange-

ment, reference interaction energy at the CCSD(T)/CBS level and non-covalent interaction 

plot) are shown in Figure 3. 

The study is not limited to the application of SAPT2+/aug-cc-pVDZ (the main objec-

tive of this work) to the complexes shown above. We settle on to include other SAPT 

methodologies of different quality (and computational resources demand). In first place, 

it was decided to continue using the SAPT2+(3)δMP2/aug-cc-pVTZ despite the high com-

putational cost. Additionally, the “low-cost” sSAPT0/jun-cc-pVDZ methodology is also 

considered since biochemical systems can have huge sizes and is a very low-demanding 

option. The values of interaction energies and the absolute errors with respect to the ref-

erence energy for these three methodologies can be found in Table 2. 

In the first place, the A-T system has the highest interaction energy of all the com-

plexes analyzed in this study and also the lowest error values of the three systems consid-

ered. All methods overestimate the interaction energy, although to a different extent. For 

example, the SAPT2+(3)δMP2/aug-cc-pVTZ methodology deviates from the reference 

value by −0.35 kJ/mol, while SAPT2+/aug-cc-pVDZ deviates by −0.30 kJ/mol. The cheaper 

sSAPT0/jun-cc-pVDZ shows a larger deviation of −1.75 kJ/mol. 

  



Chem. Proc. 2022, 4, x FOR PEER REVIEW 6 of 11 
 

 

 

Figure 3. Geometry and non-covalent interactions obtained with the NCI method [110,111] (isosur-

face of reduced density gradient 0.5 a.u.) for the three biologically relevant models used in this part 

of the study. Interaction energies are computed at the CCSD(T)/CBS level as described in the com-

putational methods section and are given in kJ/mol. 

In the peptide-relevant model, the errors are slightly higher than in the DNA-relevant 

model. In this case, both SAPT2+(3)δMP2 and SAPT2+ have an error of less than 1 kJ/mol 

and deviate in the direction of system overstabilization. On the other hand, sSAPT0 has a 

significantly higher error than the other methodologies but it goes in the opposite direc-

tion. The sSAPT0 methodology deviates by more than 2 kJ/mol and provides an energy of 

−8.29 kJ/mol versus −10.46 kJ/mol for the CCSD(T)/CBS reference. Among the three sys-

tems analyzed, this is the only one in which a less stable complex than the reference is 

predicted. 

Table 2. Interaction energies obtained for each of the complexes under study and errors with respect 

to the CCSD(T)/CBS reference energy. All values are given in kJ/mol. 

 CCSD(T) SAPT2+(3)δMP2 SAPT2+ sSAPT0 ε SAPT2+(3)δMP2 ε SAPT2+ ε sSAPT0 

A-T −68.93 −69.28 −69.23 −70.68 −0.35 −0.30 −1.75 

F49-PB −10.46 −10.95 −11.16 −8.29 −0.49 −0.70 2.17 

F-I −30.70 −32.11 −34.05 −32.86 −1.41 −3.35 −2.16 

Lastly, the complex representing the sugar-amino acid interaction exhibits greater 

deviations with respect to the reference. SAPT2+(3)δMP2 is the methodology that pro-

vides the best results with error values around 1 kJ/mol higher than those provided for 

the rest of the systems. Though the results cannot be said to be bad, it exceeds the desired 

precision of ±1 kJ/mol by approximately 0.4 kJ/mol. The other methods provide even 

larger deviations. In view of these results, it can be concluded that SAPT2+(3)δMP2/aug-

cc-pVTZ is a very robust methodology for the description of the interaction energy in sys-

tems relevant to biomolecular structures. SAPT2+/aug-cc-pVDZ may be a viable alterna-

tive depending on the accuracy and quality of the results sought. 

Until now only global interaction energies have been considered, but it is also worth 

asking what happens to the individual components that contribute to the interaction 
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energy. The overall performance of a methodology can be good, but large errors could be 

obtained for the energy components. To verify the quality of the interaction energy com-

ponents, the results provided by SAPT2+/aug-cc-pVDZ and sSAPT0/jun-cc-pVDZ will be 

compared with those provided by SAPT2+(3)δMP2/aug-cc-pVTZ, which is taken as the 

reference methodology. The values of the components for each of the methodologies are 

shown in Table 3. 

In the A-T system, notable differences can be seen between the components of the 

interaction energy at the sSAPT0 and SAPT2+(3)δMP2 levels. The largest ones are located 

in the repulsion and in the dispersion, with values of −15.49 kJ/mol and 14.09 kJ/mol, re-

spectively. In the opposite direction, these disparate results end up practically compen-

sating each other; however, the percentage errors are close to 12% in repulsion and 32% 

in dispersion. Electrostatics and induction also have differences that go in the opposite 

directions with very similar values. While sSAPT0 predicts a higher electrostatic compo-

nent than SAPT2+(3)δMP2, it falls short in induction. Taking into account the values of 

the components, an absolute difference of around −3.8 kJ/mol translates into percentage 

errors of 3.45% in electrostatics and 8.21% in induction. Slight problems with the induction 

are also observed for the SAPT2+/aug-cc-pVDZ method, which overestimates it by ap-

proximately 3.3 kJ/mol, which is associated with a relative error of 7.22%. In the rest of the 

components, the percentage error does not exceed 3.25% in any case. Therefore, at a global 

level, for the A-T dimer SAPT2+ provides an acceptable description of the interaction en-

ergy components. 

The F49-PB system is strongly dominated by the dispersive component, in fact, it 

accounts for approximately 86% of the total stabilizing interactions. Likewise, electrostat-

ics has a very limited relevance, its contribution not even reaching 5% of the total interac-

tion energy, and both SAPT2+ and sSAPT0 deviate by similar amounts. Also, the devia-

tions are fairly low in repulsion and induction. However, larger differences are observed 

for the dominant contribution of dispersion. While SAPT2+ has an absolute error of just 

0.08 kJ/mol, sSAPT0 deviates by almost 3 kJ/mol, leading to an underestimation of around 

20–21% of the dispersion term, which translates to the total interaction energy.  

Table 3. Components of the interaction energy and total interaction energy (all in kJ/mol) obtained 

with the three SAPT methodologies under study in the complexes A-T, F49-PB and F-I. Elec. Stands 

for SAPT electrostatic energy while Rep., Ind. and Dis. are respectively repulsion, induction and 

dispersion energies. 

A-T 

 Elec. Rep. Ind. Dis. Tot. 

Ref. (SAPT2+(3)δMP2/aug-cc-pVTZ) −111.14 132.94 −46.67 −44.41 −69.28 

SAPT2+/aug-cc-pVDZ −113.46 137.25 −50.04 −42.99 −69.23 

sSAPT0/jun-cc-pVDZ −114.97 117.45 −42.84 −30.32 −70.68 

F49-PB 

Methodology Elec. Rep. Ind. Dis. Tot. 

Ref. (SAPT2+(3)δMP2/aug-cc-pVTZ) −0.77 4.96 −1.42 −13.72 −10.95 

SAPT2+/aug-cc-pVDZ −1.18 5.22 −1.56 −13.64 −11.16 

sSAPT0/jun-cc-pVDZ −0.34 4.38 −1.46 −10.87 −8.29 

F-I 

 Elec. Rep. Ind. Dis. Tot. 

Ref. (SAPT2+(3)δMP2/aug-cc-pVTZ) −19.81 36.58 −5.46 −43.42 −32.11 

SAPT2+/aug-cc-pVDZ −21.33 38.26 −7.29 −43.68 −34.05 

sSAPT0/jun-cc-pVDZ −22.16 33.58 −6.82 −37.47 −32.86 

Finally, for the fucose-indole complex, there are larger errors in the total interaction 

energy for SAPT2+ than for sSAPT0. However, this is a result of error compensation, 

mainly on electrostatics and repulsion with dispersion. The sSAPT0 methodology 
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overestimates electrostatics by −2.3 kJ/mol while underestimating repulsion by 3.09 

kJ/mol. Thus, the interaction energy suffers from an overestimation of around 5 kJ/mol in 

these two terms that is compensated by an underestimation of dispersion of around 6 

kJ/mol, leading to a nice total interaction energy. Nevertheless, the qualitative picture of 

the contributions of the different components is fairly good considering the saving in com-

putational effort of the cheaper methods. If a proper balance of the different contributions 

must be ensured it is necessary to invest in computational resources going to at least 

SAPT2+ or even better to SAPT2+(3)δMP2. 

4. Conclusions 

Thanks to the use of a blind database (which includes equilibrium and non-equilib-

rium structures) we can state that SAPT2+(3)δMP2/aug-cc-pVTZ is a very robust method-

ology, providing the best statistical descriptors. However, it is important to mention that 

SAPT2+/aug-cc-pVDZ methodology which has a remarkable lower computational cost 

makes a good job and with MAD less than 1 kJ/mol also gives excellent results. After the 

application of this methodology to different model biochemical systems, results led as to 

conclude that SAPT2+ is able to predict fairly good intermolecular interaction energies. 

Moreover, SAPT2+/aug-cc-pVDZ provides an excellent picture of the contributions of the 

different energy components considering the associated computational cost. Finally, it 

should be highlighted that the SAPT2+/aVDZ methodology is a good choice for the study 

of biochemical systems. 
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