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Abstract 
 
This paper reports a QSAR study for predicting carcinogenic potency of nitroso-compounds 

bioassayed in female rats administrated by gavage as oral route. Several different theoretical 

molecular descriptors, - 0D, 1D and 2D - calculated only on the basis of knowledge of the 

molecular structure and an efficient variable selection procedure, such as Genetic Algorithm, led 

to models with satisfactory predictive ability. But the best-final QSAR model is based on the 

combination between; 0D, 1D and 2D-DRAGON descriptors capturing a reasonable 

interpretation. This QSAR model is able to explain around 86% of the variance in the 

experimental activity and manifest good predictive ability as indicated by the higher q2s of cross 

validations, which demonstrate the practical value of the final QSAR model for screening and 

priority testing. This model can be applied to nitroso-compounds different from the studied 

nitroso-compounds (even those not yet synthesized) as it is based on theoretical molecular 

descriptors that might be easily and rapidly calculated.      



Introduction 
 
Carcinogenesis is a problem known to affect population all over the world and a major 

international health issue. Almost every sphere of human activity in society faces exposure to 

potential chemical hazards of some sort. Prevention of environmentally-induced cancers is a 

major health problem whose solutions do depend on the rapid and accurate screening of potential 

chemical hazards. Lately, theoretical approaches such as; Quantitative Structure−Activity 

Relationship (QSAR) are increasingly used for accessing the risks of environmental chemicals, 

since they can markedly reduce costs, avoid animal testing, and speed up policy decisions. 

Amongst other chemicals, the nitroso-compounds are most likely the more important 

carcinogens. Of the 300 nitroso-compounds evaluated so far, more than 90 % have demonstrated 

to be carcinogenic in a wide variety of animal species 1. These compounds are known to induce 

tumors in several vital organs causing pancreatic cancer, gastrointestinal cancer, renal or 

childhood brain tumors, etc. 2, 3. This has stimulated several experimental and theoretical 

investigations about cancer induction by this family of compounds 3-6.  

Sources of human exposure to such compounds range from occupational settings (e.g.: in the 

rubber industry) to the proper life style (diet, tobacco habits, use of cosmetics) or resort to 

pharmaceuticals and agricultural chemicals 7. Furthermore, they can be generated in the body by 

nitrosation of amines or by reaction with products of nitric oxide generated during inflammation 

or infection. 

The present work aims at developing a validated QSAR model for predicting the toxicity of 

environmental nitroso-compounds from molecular structure alone. The toxicological endpoint is 

carcinogenic potency, TD50, of a set of 26 nitroso-compounds, divided into N-nitrosoureas (12 

chemicals), N-nitrosamines (13 chemicals) and C-nitroso-compounds (1 chemical), which have 

been bioassayed in female rat using gavage as route of administration. We examined the use of 

regression models along with feature selection algorithms derived from a variety of molecular 

representations. For this training set, the combined descriptors provided the best model and 

exhibited good quality and predictive power, as judged by extensive cross-validation.  Our final 

model shall aid in the future as an oriented tool toward preliminary ranking and prioritization of 

chemicals for toxicological assessment or the synthesis of nitroso-compounds with lower 

carcinogenicity.   

 



Results and Discussion 
 
For QSAR modelling, several combinations of DRAGON descriptors - 0, 1 and 2 dimension -

were considered in our study (see Table 1). Following the principle of parsimony 8 we choose the 

five-variable models as the “best” models.  

 

Table 1. Brief description of types of descriptors used in the study. 
Descriptors Dimensionality Molecular descriptors 
constitutional 0D molecular weight, no. of atoms, no. of non-H atoms, no. of bonds, 

no. of heteroatoms, no. of multiple bonds, no. of aromatic bonds, 
no. of functional groups (hydroxy, amine, aldehyde, carbonyl, 
nitro, nitroso, ...), no. of rings, no. of circuits, no. of H-bond 
donors, no. of H-bond acceptors, chemical composition 

topological indices 2D molecular size index, molecular connectivity indices, information 
contents, Kier shape indices, path/walk-Randic shape indices, 
Zagreb indices, Schultz indices, Balaban J index, Wiener indices, 
information contents 

molecular walk counts 2D molecular walk counts of order 1-10, self-re-turning of order 1-10 
Burden eigenvalues 2D positive and negative Burden eigenvalues weighted by atomic 

polarizability, atomic Sanderson electronegativity or atomic van 
der Waals volume 

topological charge 
indices 

2D order 1-10 of Galvez charge topological indices, mean topological 
charge indices order 1-10, global topological charge index, 
maximum, minimum, average and total charges, local dipole 
index 

autocorrelation 
descriptors 

2D Broto-Moreau autocorrelation of a topological structure, Moran 
autocorrelation, Geary autocorrelation, H-autocorrelation 
weighted by atomic polarizability, atomic Sanderson 
electronegativity or atomic van der Waals volume, leverage 
autocorrelation weighted by atomic polarizability, atomic 
Sanderson electronegativity or atomic van der Waals volume, R-
autocorrelation weighted by atomic polarizability, atomic 
Sanderson electronegativity or atomic van der Waals volume 

connectivity 2D Calculated from the vertex degree of the atoms in the H-depleted 
molecular graph 

eigenvalue based 
indices 

2D Calculated by the eigenvalues of square (usually symmetric) 
matrix representing a molecular graph 

 

 

Table 2. The statistical parameters of the linear regression models obtained for the 9 

combinations of descriptors involved in the comparison 
 

Block* Dimensionality Models R2 q2
LOO q2

boot LOF AIC 
Cons 0D Sv  Ss  nAT  nBO  nCIR 51.82 28.34 0.52 0.577 0.454 
WPC 2D MWC09  SRW08  MPC04  MPC05  piPC02 61.79 37.61 9.31 0.457 0.36 
TopChar 2D GGI2  GGI6  GGI10  JGI3  JGI4   63.08 42.61 32.12 0.442 0.348 
Eig 2D LP1  VRA2  VEv2  VRe2  VEp2   66.12 43.26 25.7 0.406 0.32 



Connec) 2D X2A  X4A  X0v  X3Av  X4Av   69.00 54.05 28.56 0.371 0.292 
2D-A 2D ATS1v  ATS3v  ATS4v  ATS3e  ATS5e   77.96 64.85 52.15 0.264 0.208 
Burden 2D BEHm7  BELm6  BELv7  BEHe3  BELp3   78.37 62.64 56.51 0.259 0.204 
Top 2D ZM2V  Dz  Whete  MAXDP  T(N..N)   81.14 66.27 42.25 0.226 0.178 
0D-2D 0D, 1D and 2D BEHm7  JGI9  VEA2  C-001  C-026 88.56 80.35 74.08 0.137 0.108 

 

*Cons: Constitutionals; WPC: Walk Path Counts, TopChar: Topological charge indices; Eig: eigenvalue based indices; Connec: Connectivity 

indices; 2D-A: 2D-Autocorrelations; Burden: Burden eigenvalues; Top: Topological descriptors; 0D-2D: combination of several descriptors  

from 0D dimension to 2D dimension.   

 

As can be seen in Table 2, the value of determination coefficients; R2 is lower than 82 for all 

methodologies, except the 0D-2D combination, which has an R2 equal to 88.56. This model also 

yielded the best values for other statistical parameters like the Akaike’s information criterion 

(AIC) and the Friedman´s lack-of-fit function (LOF) 9 which has the lowest values in comparison 

with the rest of the methodologies. In the same way, the Fisher ratio is the highest. Moreover, the 

validation parameters confirm the before. All methodologies had statistical results inferior to the 

results yielded by 0D-2D combination. The results of the cross-validated determination 

coefficient for the leave-one-out (q2
LOO) and bootstrapping (q2

boot) procedures have values lower 

than 67.00 and 57.00 respectively. For all these reasons, we considered that the model resulting 

of combination of 0D, 1D and 2D DRAGON descriptors can be useful tools for the prediction of 

carcinogenic potency of nitroso-compounds.  

This model is given below, together with detailed statistics of the MLR analysis.  

 

Model 1 

9.528026-C1.219-

001-C0.590VEA228.197-JGI926.372BEHm7-1.942log 50

+⋅

⋅+⋅⋅+⋅=− TD
 (1) 

 

N = 26     R2 = 88.56     S = 0.228     F= 30.959     p < 10-5     ρ = 4.333 

LOF = 0.137     AIC = 0.108 

q2
LOO-CV = 80.35     SCV = 0.298     q2

Boot = 74.08     R2
Scram = 0.148 

 

 

An aspect deserving special attention is the degree of colinearity between the variables of the 

model, which can readily be diagnosed by analyzing the cross-correlation matrix (Table 3). As 



seen in Table 3, the pair of descriptors, (VEA2; BEHm7) is correlated each with other. For that 

reason, it is of interest to examine the performance of orthogonal complements.  

 

Table 3. Intercorrelation among the four descriptors selected as statistically significant by the 

MLR-GA technique 

 C-026 C-001 VEA2 JGI9 BEHm7 
C-026 1.00 -0.26 0.00 0.00 -0.10 
C-001 1.00 0.07 -0.21 0.13 
VEA2 1.00 -0.49 -0.95 
JGI9 1.00 0.39 
BEHm7 1.00 

 

 

Following the Randić´s orthogonalization technique, we determined orthogonal complements for 

all variables in Model 1 (eq. 1), which in turn were further standardized, to enable derivation of 

the following best equation (Model 2, eq. 2). Predicted, observed values, simple residuals and 

deleted residuals are given in Table 5. 

 

Model 2. 

0.609-026)-C(0.453-

001)-C(0.244JGI90.204BEHm7-0.322log

1

245
50

Ω⋅

Ω⋅+Ω⋅+Ω⋅=− TD
  (2) 

 

N = 26     R2 = 86.82     S = 0.272     F= 34.590     p < 10-5     ρ = 5.200 

LOF = 0.125     AIC = 0.109 

q2
LOO-CV = 76.29     SCV = 0.328     q2

Boot = 70.64     R2
Scram = 0.069 

 

where the symbol iΩ X means the orthogonal complement of variable X, while the subscript 

refers to the order selected for orthogonalizing the variables.  

Descriptor 3ΩVEA2 has been excluded as it was found to be statistically non-significant. Its 

omission, however, had little effect on the overall fitness of the model as the statistics are as 

robust as before. Yet there are significant differences between Model 1 and Model 2 as regards 

the interpretation of the results. By comparing eq. 1 with eq. 2, one can see that there are no 



changes in either the sign of the regression coefficients. Nevertheless, the relative contributions 

of the variables in the orthogonal-descriptor model are different to those in the non-

orthogonalized model. Therefore, for purposes of QSAR interpretability, we shall use the 

orthogonal-descriptor model defined in eq. 2. 

According to Model 2 (eq. 2), the 2ΩC-001 variable – number of CH3R/CH4 fragments (where R 

represents any group linked through carbon) – has a positive influence on carcinogenic potency, 

expressed as –logTD50. A positive regression coefficient indicates that an increased of number of 

CH3R/CH4 fragments decrease the TD50 value and increase the carcinogenic activity. In contrast, 
1ΩC-026 variable – number of R—CX—R fragments, where X represents any electronegative 

atom (O, N, halogens) – has a negative one. This means that the carcinogenic activity of this set 

of nitroso-compounds is favored by the absence of R—CX—R substructures.  

Finally, two topochemicals descriptors are also inside the QSAR model, 5ΩBEHm7 – highest 

eigenvalue no.7 of Burden matrix/weighted by atomic masses – and 4ΩJGI9 – mean topological 

charge index of order9 – the first descriptor has negative contribution on carcinogenic activity, 

while the second one has positive contribution. The physical interpretation of these complex 

topological indices (Burden eigenvalues and Topological Charge indices) is difficult because 

they essentially condense a large amount of structural and property information into a single 

number; even so these descriptors have been extensively used in Medicinal Chemistry 10-12.    

 



 
Figure 1. Williams plot: plot of standardized residuals (y-axis) versus leverages (hat values; x-

axis) for each compound of the training set. 

 

Finally, the applicability domain was established for Model 2, determining the leverage values 

for each compound. Figure 1 shows the Williams plot; i.e. plot of standardized residuals (y-axis) 

versus leverages (x-axis) for each compound of the training set. From this plot, the applicability 

domain is established inside a squared area within ±2 standard deviations and a leverage 

threshold h* (h* = 3p´/n, being p´ the number of model parameters and n the number of 

compounds). As seen in figure 1, the majority of compounds of the training set are inside of this 

area, however one nitroso-compound (chemical 15) has a leverage greater than h*, but show 

standard deviation values within the limit, which implies that they are not to be consider outliers 

but influential chemicals 13. For future predictions, predicted carcinogenicity data must be 

considered reliable only for those chemicals that fall within the applicability domain on which 

the model was constructed 14 

 

3. Conclusions 



The relationship between the chemical structure of nitroso-compounds and their carcinogenicity 

in female rats administrated by gavage oral route has been investigated with the principal 

objective of developing QSAR models for setting testing priorities, and for screening of putative 

new chemical molecules before their synthesis. The use of several different theoretical molecular 

descriptors, calculated only on the basis of knowledge of the molecular structure, and an efficient 

variable selection procedure, such as Genetic Algorithm, led to models with satisfactory 

predictive ability for carcinogenicity. 

The most accurate QSAR model was based on a combination between 0D, 1D and 2D DRAGON 

descriptor capturing a reasonable interpretation. This model can be applied to novel nitroso-

chemicals as it is based on theoretical molecular descriptors that might be easily and rapidly 

calculated. Finally, it must be underlined that the predicted data must be considered reliable only 

for those chemicals that fall within the applicability domain on which the model was obtained.          

 

 

Materials and Methods 

Data set. A set of 26 nitroso-compounds (N-nitroso and C-nitroso) was used as the training set of 

chemicals. These had been experimentally assayed for carcinogenic potency (TD50) in female 

rats and using gavage as oral administration route. For a given target site(s), and in the absence 

of tumors in control animals, TD50 is taken to be the chronic dose (in mg/kg of body weight per 

day) that induces tumors in half of the test animals at the end of a standard lifespan for the 

species 15.  Thus, a low value of TD50 indicates a potent carcinogen, whereas a high value reflects 

a weak carcinogen. The lowest TD50 values reported for each chemical, expressed in μmol/kg of 

body weight per day and log-transformed (−logTD50), was used in the following QSAR 

modelling. This training set has been collected from Carcinogenic Potency Database (CPDB) 

published in the CRC Handbook of Carcinogenic Potency and Genotoxicity Databases 16 and in 

internet site (http://potency.berkeley.edu/cpdb.html). Table 4 and 5 give a complete list of the 

chemicals along with the Simplified Molecular Input Line Entry Specification (SMILES) code, 

the Chemical Abstract Service (CAS) Registry Number and experimental data for each chemical.  

 

Tabla 4. Names, CAS numbers and SMILES of nitroso-compounds used in this QSAR study. 

Comp. Name CAS  



No. Number SMILES 
1 N-Nitrosomethyl(2-oxopropyl)amine 55984-51-5 CN(CC(C)=O)N=O 
2 N-Nitrosodiethylamine 55-18-5 CCN(CC)N=O 
3 N-Nitrosobis(2-oxopropyl)amine 60599-38-4 O=NN(CC(=O)C)CC(=O)C 

4 N-Nitroso-bis-(4,4,4-trifluoro-N-
butyl)amine 83335-32-4 N(CCCC(F)(F)F)(CCCC(F)(F)F)N=O 

5 N-Nitrosodipropylamine 621-64-7 O=NN(CCC)CCC 
6 2-Nitrosomethylaminopyridine 16219-98-0 C1=CC=CC(=N1)N(N=O)C 
7 N-nitrosothialdine 81795-07-5 CC1SC(C)SC(C)N1N=O 
8 N-Nitroso-N-methyl-N-dodecylamine 55090-44-3 O=NN(C)CCCCCCCCCCCC 

9 N-Nitrosomethyl-(2-tosyloxyethyl) 
amine --- NC(CN=O)COS(=O)(C1=CC=C(C)C=C1)=O 

10 N-Nitrosomethyl-(3-
hydroxypropyl)amine 70415-59-7 N(N(CCCO)C)=O 

11 N-Nitrosodithiazine 114282-83-6 N1(CSCSC1)N=O 
12 Nitrosododecamethyleneimine 40580-89-0 O=NN(CCCCCC1)CCCCCC1 
13 3-Nitrosomethylaminopyridine 69658-91-9 C1=CC=C(C=N1)N(N=O)C 
14 4-Nitrosomethylaminopyridine 16219-99-1 C1=CC(=CC=N1)N(N=O)C 
15 1-Ethylnitroso-3-(2-oxopropyl)-urea --- O=C(N(CC)N=O)NCC(=O)C 
16 N-n-Butyl-N-nitrosourea 869-01-2 O=C(N(CCCC)N=O)N 
17 2-Oxopropylnitrosourea --- N(C(=O)N)(N=O)CC(C)=O 

18 1-Nitroso-1-hydroxyethyl-3-
chloroethylurea 96806-34-7 O=C(N(CCO)N=O)NCCCl 

19 1-Amyl-1-nitrosourea 10589-74-9 O=C(N(CCCCC)N=O)N 
20 N-Hexylnitrosourea 18774-85-1 O=C(N(CCCCCC)N=O)N 
21 1-(2-Hydroxyethyl)-1-nitrosourea 13743-07-2 O=C(N(CCO)N=O)N 

22 1-Allyl-1-nitrosourea 760-56-5 C(C(N(C(N([H])[H])=O)N=O)([H])[H])(=C([H])[
H])[H] 

23 1-Nitroso-1-(2-hydroxypropyl)-3-
chloroethylurea 96806-35-8 O=C(N(CC(C)O)N=O)NCCCl 

24 N-Nitrosobenzthiazuron 51542-33-7 O=C(N(C)N=O)NC1=NC2=C(S1)C=CC=C2 

25 1-(2-oxopropyl)nitroso-3-(2-
chloroethyl)urea 110559-85-8 O=C(NCCCl)N(N=O)CC(C)=O 

26 1-(3-Hydroxypropyl)-1-nitrosourea 71752-70-0 O=C(N(CCCO)N=O)N 
 

Table 5. Observed, predicted and residual values of 26 nitroso-compounds used for derived the 

final QSAR model 2 (eq. 2).  

Comp. Carcinogenic potencya RESb RESdel
c 

No. Name TD50 Pobs Ppred     

1 N-Nitrosomethyl(2-oxopropyl)amine 0.144 -0.567 -0.702 0.135 0.148 

2 N-Nitrosodiethylamine 0.348 -0.478 -0.446 -0.032 -0.034 

3 N-Nitrosobis(2-oxopropyl)amine 1.081 -0.680 -0.524 -0.155 -0.174 

4 N-Nitroso-bis-(4,4,4-trifluoro-N-butyl)amine 1.093 -0.265 -0.375 0.111 0.117 



5 N-Nitrosodipropylamine 1.429 -0.397 -0.610 0.213 0.251 

6 2-Nitrosomethylaminopyridine 1.56 -0.625 -0.614 -0.011 -0.012 

7 N-nitrosothialdine 2.512 0.459 0.499 -0.041 -0.052 

8 N-Nitroso-N-methyl-N-dodecylamine 2.872 -0.155 -0.422 0.267 0.327 

9 N-Nitrosomethyl-(2-tosyloxyethyl) amine 13.434 -0.045 0.001 -0.046 -0.053 

10 N-Nitrosomethyl-(3-hydroxypropyl)amine 29.458 -0.531 -0.894 0.363 0.404 

11 N-Nitrosodithiazine 34.016 -0.936 -0.759 -0.177 -0.196 

12 Nitrosododecamethyleneimine 37.489 0.842 0.515 0.328 0.468 

13 3-Nitrosomethylaminopyridine 44.407 -1.128 -1.002 -0.126 -0.189 

14 4-Nitrosomethylaminopyridine 195.422 -1.469 -1.385 -0.084 -0.121 

15 1-Ethylnitroso-3-(2-oxopropyl)-urea 1.109 -0.039 0.093 -0.131 -0.650 

16 N-n-Butyl-N-nitrosourea 1.839 -1.574 -1.261 -0.312 -0.386 

17 2-Oxopropylnitrosourea 2.205 -1.647 -1.757 0.109 0.146 

18 1-Nitroso-1-hydroxyethyl-3-chloroethylurea 2.495 -0.458 -0.464 0.006 0.007 

19 1-Amyl-1-nitrosourea 3.003 -0.034 -0.509 0.475 0.582 

20 N-Hexylnitrosourea 3.343 -2.291 -1.920 -0.371 -0.505 

21 1-(2-Hydroxyethyl)-1-nitrosourea 3.396 -1.532 -1.920 0.388 0.528 

22 1-Allyl-1-nitrosourea 3.687 -0.400 -0.178 -0.222 -0.360 

23 1-Nitroso-1-(2-hydroxypropyl)-3-chloroethylurea 4.222 -0.524 -0.389 -0.135 -0.146 

24 N-Nitrosobenzthiazuron 4.783 -0.193 -0.428 0.235 0.269 

25 1-(2-oxopropyl)nitroso-3-(2-chloroethyl)urea 6.551 -0.816 -0.348 -0.468 -0.513 

26 1-(3-Hydroxypropyl)-1-nitrosourea 8.632 -0.343 -0.025 -0.319 -0.356 
a Carcinogenic activity estimated as TD50 (chronic dose in μmol/kg of body weight per day 

inducing tumors in 50% of the test animals at the end of a lifetime) and then log-transformed to 

P = −logTD50. 

bRES = Pobs−Ppred 

cDeleted residuals. 

Molecular Descriptors. Our models are based on nine different sets of descriptors with a long 

history of usage in structure–activity and structure–property correlation 17-21, which are available 

in the DRAGON software package (version 5.4 - 2006) 22. These sets of molecular descriptors 

can be grouped into according to their dimensionality in: 0D, 1D and 2D, which are 

conformationally independent. The type of the descriptors used in this study is given in Table 1. 

 



Modelling technique. The objective was to obtain a mathematical function (eq. 3) that best 

describes carcinogenic potency, P (= −logTD50), as a linear combination of the predictor X-

variables (descriptors), with the coefficients ak. Such coefficients were optimized by means of 

Multi-Linear Regression (MLR) analysis, implemented in software MobyDigs (version 1.0) 23, 

using Genetic Algorithm-Variable Subset Selection (GA-VSS). 

02211 aXaXaXaP kk ++++= Κ                       (1) 

Feature selection. The Genetic Algorithm (GA) approach was used as the variable selection 

method 24, 25. Starting from a population of 100 random models with a number of variables equal 

to or less than a user-defined maximum value, the algorithm explores new combinations of 

variables, selecting them by a mechanism of population evolution involving processes analogous 

to biological reproduction/mutation. The models based on the selected subsets of variables were 

tested and evaluated by the cross-validated explained variance (q2), and only the best quality 

models were retained in the population undergoing the evolution procedure. The variables for the 

obtained models were found to be highly significant, within a 95% confidence level. 

 

Orthogonalization procedure. One very useful and informative approach of avoiding multi-

colinearity is the orthogonal descriptors technique suggested by Randić 26-28 some years ago. In 

the Randić’s approach, after choosing a starting descriptor, subsequent descriptors are added 

only as their orthogonal complements to the descriptors already present. This approach has the 

advantages that: a) the regression coefficients are stable (i.e., they do not change as new 

descriptors are added); and b) the new information supplied by each additional descriptor is 

clearly distinguishable in the final equation statistics. In order to address the problem of multi-

colinearity, we have applied Randić’s approach by inserting the variables in descending order 

based on their relative contributions to q2, and then pursuing to their orthogonalization. The 

resulting orthogonal-descriptor model was standardized afterwards.  

 

Model evaluation. Several diagnostic statistical tools were used for evaluating our model 

equations, in terms of the criteria goodness-of-fit and goodness-of-prediction. Measures of 

goodness-of-fit have been estimated by standard statistics such as determination coefficient, R2; 

the standard deviation, S; the Fisher’s statistic, F; as well as the ratio between the number of 

compounds and the number of adjustable parameters in the model, known as ρ statistics. On the 



other hand, goodness of the prediction was evaluated by means of cross validation (CV), 

basically leave-one-out (LOO-CV), bootstrapping and scrambling validation techniques 9.  

Apart from the classical regression parameters listed above, we analyzed other important 

statistics, the Akaike’s information criterion (AIC) and the Friedman´s lack-of-fit function (LOF) 
9. These gave us enough criteria for comparing models with different parameters, numbers of 

variables and chemicals.   

In summary, good overall quality of the models is indicated by a large F (significance of the 

models), FIT and ρ values; small AIC and LOF (overfitting) values; R2 (goodness of fit) and q2 

(predictability) values close to one. In the case of R2
Scram, this should have a value close to zero, 

as it checks random correlations.   
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