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ABSTRACT. Classification algorithms are proposed based on information entropy  and applied to 13 
human immunodeficiency virus type 1 inhibitors. A number of results are compatible with the data 
suffering combinatorial explosion. After the equipartition conjecture, entropy production is most 
uniformly distributed. In ddI the formula is N4O3S0P0X0, X = F, Cl; it is selected as a reference  
<11111>. In most cases (ddI, ddC, d4T, novel proposed ligand) the formula is N3–4O3S0P0X0, while in 
3TC the formula is N3O3S1P0X0. The analysis compares well with other classification taken as good. 
 

Introduction 

Ab initio  theoretical calculations, molecular dynamics simulations and docking are useful tools for 

investigating important biological complexes.1–12 At least three anti-human immunodeficiency virus type 

1 (HIV-1) drugs, for combination therapy, have become the standard treatment of acquired 

immunodeficiency syndrome (AIDS) drugs that have been licensed for clinical use, or are subjected to 

advanced clinical trials, belong to one of the following three classes: (1) nucleoside/nucleotide reverse 

transcriptase inhibitors (NRTIs/NtRTIs) [abacavir (ABC), emitricitabine [(–)FTC], zidovudine (AZT), 

didanosine (ddI), zalcitabine (ddC), stavudine (d4T), lamivudine (3TC), tenofovir disoproxil fumarate], 

(2) non-nucleoside reverse transcriptase inhibitors (NNRTIs) [emivirine, efavirenz, nevirapine, 

delavirdine], and (3) protease inhibitors (PIs) [lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, 

indinavir]. Various other events in the HIV replicative cycle can be considered as potential targets for 

chemotherapeutic intervention: (1) viral entry via  blockade of the viral coreceptors CXCR4 [bicyclam 

(AMD3100) derivatives] and CCR5 (TAK-799 derivatives), (2) viral adsorption via  binding to the viral 

envelope glycoprotein gp120 (polysulphates, polysulphonates, polycarboxylates, polyoxometalates, 

polynucleotides and negatively charged albumins), (3) viral assembly and disassembly via  NCp7 Zn 

finger-targeted agents [2,2’-dithiobisbenzamides (DIBAs) and azodicarbonamide (ADA)], (4) virus-cell 

fusion via  binding to the viral envelope glycoprotein gp41 (T-1249), (5) proviral deoxyribonucleic acid 

(DNA) integration via  integrase inhibitors, e.g. 4-aryl-2,4-dioxobutanoic acid derivatives, as well as (6) 

viral messenger ribonucleic acid (mRNA) transcription via  inhibitors of the transcription 

(transactivation) process (flavopiridol, fluoroquinolones). In addition, new NRTIs, NNRTIs and PIs 

have been developed that possess, respectively: (1) improved metabolic characteristics, e.g., 
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phosphoramidate and cyclosaligenyl pronucleotides bypassing the first phosphorylation step of NRTIs, 

(2) increased activity [second  or third  generation NNRTIs (TMC-125, DPC-093)] and (3) different, 

non-peptidic scaffold, e.g. cyclic urea (mozenavir) and 4-hydroxy-2-pyrone (tripanavir). 

The advent of so many new compounds, other than those that have been formally approved for the 

treatment of HIV infections, will undoubtedly improve the prognosis of patients with AIDS and 

AIDS-associated diseases. Nucleoside analogues constitute a family of biological molecules (ddI, d4T, 

ddC and T3C), which play an important role in the transcription process of HIV. The normal nucleoside 

substrates, used by reverse transcriptase (RT) to synthesize DNA, are mimicked by these nucleoside 

analogues, which lacked a 3’-OH group and, consequently, act as chain terminators when incorporated 

into DNA by RT. Although these nucleoside analogues show good activity as inhibitors of HIV, their 

long-term usefulness is limited by toxicities. Resistance and mutation are also problems. The 

development of better drugs requires a better understanding of how the drugs work, the mechanism of 

drug resistance and the interaction with the receptor, as well as the stability of the drugs inside the active 

site. A novel HIV RT inhibitor ligand was proposed, which indicated the highest docking scores and 

more hydrogen-bond interactions with the residues of the RT active site.13 A simple computerized 

algorithm, useful for establishing a relationship between chemical structures and their biological 

activities or significance, is proposed and exemplified here. The starting point is to use an informational 

or configurational entropy for pattern recognition purposes. The entropy is formulated on the basis of a 

matrix of similarity  between two chemical or biochemical species. As entropy is weakly discriminating 

for classification purposes, the more powerful concept of entropy production  and its equipartition 

conjecture  are introduced.14 In earlier publications the periodic classification of local anaesthetics was 

analyzed.15 The aim of the present report is to develop the learning potentialities of the code and, since 

molecules are more naturally described via  a varying size structured representation, the study of general 

approaches to the processing of structured information. 

Table 1 contains the vectors associated with 13 HIV-1 inhibitors of various types: non-nucleoside 

reverse transcriptase inhibitors (NNRTIs), nucleoside reverse transcriptase inhibitors (NRTIs), 

nucleotide reverse transcriptase inhibitors (NtRTIs) and protease inhibitors (PIs). 

 

Table 1. Vector properties of human immunodeficiency virus type 1 inhibitors. 
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) 
1. efavirenz    <00110> 3. delavirdine   <00111> 
2. nevirapine    <10111> 
Nucleoside reverse transcriptase inhibitors (NRTIs) 
4. didanosine (ddI)   <11111> 8. novel proposed ligand <11111> 
5. zalcitabine (ddC)   <01111> 9. zidovudine (AZT)  <00111> 
6. stavudine (d4T)   <01111> 10. abacavir (ABC)  <00111> 
7. lamivudine (3TC)   <01011> 
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Nucleotide reverse transcriptase inhibitor (NtRTIs) 
11. tenofovir disoproxil  <00101> 
Protease inhibitors (PIs) 
12. amprenavir   <00011> 13. lopinavir   <10111> 
 

Results and Discussion 

Many HIV-1 inhibitors fit the following general scheme: (base derivative)–(furan ring). The base is 

often a guanine (Gua) or cytosine (Cys); the furan normally contains one O atom. The intercorrelations 

in the matrix of Pearson correlation coefficients are illustrated in the partial correlation diagram, which 

contains 28 high (r ≥ 0.75), 24 medium (0.50 ≤ r < 0.75) and 12 low (0.25 ≤ r < 0.50) partial 

correlations. Inhibitors with high partial correlatios show a similar vector property. However, the results 

should be taken with care, because both compounds with constant <11111> vector (Entries 4, 8) show 

null standard deviation, causing high partial correlations (r = 1) with any inhibitor, which is an artifact. 

With the equipartition conjecture the intercorrelations are illustrated in the partial correleation diagram, 

which contains 20 high, 22 medium and 18 low partial correlations. Notice that 22 out of the 24 high 

partial correlations have been corrected. The grouping rule for 0.88 ≤ b1 ≤ 0.93 allows: 

Cb1 = (1,3,9,10)(2,13)(4,8)(5,6)(7)(11)(12)
 

 

The seven classes show an entropy   h
) 
R b1( ) = 24.22. Dendrogram and radial tree20–22 separate the same 

classes. The NRTI ddI and novel proposed ligand inhibitors are grouped into the same class, and NRTI 

ddC and d4T. Inhibitors belonging to the same class appear highly correlated in partial correlation 

diagrams, in agreement with previous results for Entries 4–8. At level 0.82 ≤ b2 ≤ 0.84 classification is: 

Cb2 = (1,3,9,10,11)(2,13)(4,8)(5,6,7)(12)
 

Five classes result in this case; the entropy decreases to  
h

) 
R b2( ) = 11.90. Both dendrogram and radial 

tree matching to <i1,i2,i3,i4,i5> and Cb2  separate the same five classes, in agreement with both partial 

correlation diagrams, dendrogram, binary tree and previous results obtained for Entries 4–8. A high 

degree of similarity is found for Entries 2–13, 3–9–10, 4–8 and 5–6. Again NRTI ddI and novel 

proposed ligand are grouped into the same class and NRTI ddC, d4T and 3TC. The lower-level b2 

classification process shows lower entropy and may be more parsimonious. The b2 may have greater 

signal-to-noise ratio than b1 classification. Entries 4–8 belong to the same class at any grouping level b. 

A comparative analysis of the set of 1–13 classes is in agreement with previous results obtained for 

Entries 4–8. Once more NRTI ddI and novel proposed ligand are grouped into the same class and NRTI 

ddC, d4T and 3TC. The inclusion in the radial tree (cf. Figure 1) is in agreement with partial correlation 
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diagrams, dendrograms, binary trees and previous results for Entries 4–8. Moreover, the classification 

presents lower bias and greater precision, with lower divergence with regard to the original distribution. 

 
Figure 1. Radial tree for human immunodeficiency virus type 1 inhibitors. 

 

Program SplitsTree analyzes cluster analysis (CA) data.23 Its split decomposition  takes a distance 

matrix  and produces a graph representing the relationships between taxa. For ideal data this graph is a 

tree whereas less ideal data will give rise to a tree-like network. As split decomposition does not force 

data onto a tree, it can provide a good indication of how tree-like given data are. The splits graph for the 
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13 HIV-1 inhibitors of Table 1 (cf. Figure 2) reveals no conflicting relationship. The splits graph is in 

general agreement with partial correlation diagrams, dendrograms and binary trees (Figure 1). 
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Figure 2. Splits graph for the human immunodeficiency virus type 1 inhibitors. 

A principal component analysis (PCA)24 has been carried out for the HIV-1 inhibitors. Factors F1–

F5 show that F1 explains 30% of the variance (70% error), F1–2, 55% of variance (45% error) and F1–3, 

76% of variance (24% error). For F1 and F4, i2 has the greatest weight in the profile; however, F1 cannot 

be reduced to three variables {i1,i2,i4} without a 19% error. For F2, i3 has the greatest weight; 

notwithstanding, F2 cannot be reduced to three variables {i1,i2,i3} without a 4% error. For F3, i4 and i5 

have the greatest weight; furthermore, F3 can be reduced to two variables {i4,i5} with a 0% error. For F5, 

i1 has the greatest weight; nevertheless, F5 cannot be reduced to three variables {i1,i3,i4} without a 22% 

error. The F1–5 can be considered as linear combinations of {i1,i2,i4}, {i1,i2,i3}, {i4,i5}, {i1,i2,i3} and 

{i1,i3,i4} with 19%, 4%, 0%, 18% and 22% errors, respectively. In plot F2–F1 (cf. Figure 3) those HIV-1 

inhibitors with the same vector property appear superposed. Inhibitors 9 and 10 (NRTI) come out placed 

over 3 (NNRTI), 11 (NtRTI), over 1 (NNRTI) and 13 (PI), over 2 (NNRTI). Four classes of inhibitors 

are clearly distinguished in agreement with classical classification: class NNRTI (3 units, left top), class 

NRTI (7 units, right), class NtRTI (1 unit, left) and class PI (2 units, low). The classification is in 

agreement with partial correlation diagrams, dendrograms, binary trees and splits graph (Figures 1–2). 
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Figure 3. Principal component analysis F2 vs. F1 plot for the HIV-1 inhibitors. 

 

Experimental Procedures 

The key problem in classification studies is to define similarity indices, when several criteria of 

comparison are involved. The first step in quantifying the concept of similarity, for molecules of HIV-1 

inhibitors, is to list the most important portions of such molecules. Furthermore, the vector of properties  

i  = <i1,i2,…ik,…> should be associated with each inhibitor i, whose components correspond to different 

characteristic groups in the inhibitor molecule, in a hierarchical order according to the expected 

importance of their pharmacological potency. If the m-th  portion of the molecule is pharmacologically 

more significant for the inhibitory effect than the k-th  portion, then m < k. The components ik are “1” or 

“0”, according to whether a similar (or identical) portion of rank k  is present or absent in inhibitor i, 

compared with the reference inhibitor. The analysis includes such chemical compounds that fit the 

following general scheme: (base derivative)–(furan ring), since these are the most numerous and have 

the widest range of uses among the species used in practice of inhibition. The base portion is often a 

guanine (Gua) or cytosine (Cys) derivative; the furan ring normally contains one O heteroatom. In 

didanosine (ddI) the base is a Gua derivative, and the furan contains only one O heteroatom. It is 

assumed that the structural elements  of an inhibitor molecule can be ranked, according to their 

contribution to inhibitory activity, in the following order of decreasing importance: number of N atoms 

> number of O atoms > number of S atoms > number of P atoms > number of halogen atoms. The ddI 

molecule contains four N, three O, no S, no P and no halogen (X = F, Cl) heteroatoms (N4O3S0P0X0). In 

some inhibitors the base is a Gua (ddI, novel proposed ligand), in some others, a Cys derivative (ddC, 
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d4T, 3TC). In most inhibitors the furan ring contains only one O heteroatom (ddI, ddC, d4T, novel 

proposed ligand, N3–4O3S0P0X0), while in 3TC the furan ring includes one O and one S heteroatoms 

(N3O3S1P0X0). In the NRTI inhibitor ddI the base is a Gua derivative, and the furan contains only one O 

heteroatom. The molecule contains four N, three O, no S, no P and no halogen heteroatoms 

(N4O3S0P0X0). Obviously its associated vector is <11111>. In this study, ddI was selected as a reference  

HIV-1 inhibitor, because of the good docking scores with the receptor RT. This improves the quality of 

the classification for those inhibitors similar to ddI. The selection as reference of an inhibitor dissimilar 

to ddI, e.g. tenofovir disoproxil, would not improve the quality of the classification for those inhibitors 

similar to ddI. 

Vector <00110> is associated with efavirenz since it contains one N, two O, no S, no P and four 

halogen atoms. Let us denote by rij (0 ≤ rij ≤ 1) the similarity index of two inhibitors associated with 

vectors   i  and   j , respectively. The relation of similitude is characterized by a similarity matrix  R = [rij]. 

The similarity index between two inhibitors  i  = <i1,i2,…ik…> and  j  = <j1,j2,…jk…> is defined as: 

rij = tk ak( )k

k
∑    (k = 1,2,…)

 
                  

(1) 

where 0 ≤ ak ≤ 1 and tk = 1 if ik = jk, but tk = 0 if ik ≠ jk. The definition assigns a weight (ak)k to any 

property involved in the description of molecule i  or j. The grouping algorithm  uses the stabilized  

matrix of similarity, obtained by applying the max-min composition rule o  defined by: 

RoS( )ij = maxk mink rik ,skj( )[ ]         (2) 

where R = [rij] and S = [sij] are matrices of the same type, and (RoS)ij, element (i,j)-th  of matrix RoS. 

When applying this rule iteratively so that R(n+1) = R(n) o R, there exists an integer n  such that: 

R(n) = R(n+1) = … The matrix R(n) is called the stabilized similarity matrix. Its importance lies in the 

fact that in the classification it will generate a partition into disjoint classes. It is used and designated by 

R(n) = [rij(n)]. The grouping rule  is the following: i  and j  are assigned to the same class if rij(n) ≥ b. 

The class of i noted     
) 
i  is the set of species j  that satisfies rule rij(n) ≥ b. The matrix of classes is: 

  

) 
R n( ) = ) r ) 

i 
) 
j [ ]= maxs,t rst( )   (s ∈

) 
i ,  t ∈

) 
j )        (3) 

where s  stands for any index of a species belonging to the class   
) 
i  (similarly for t  and     

) 
j ). Rule (3) 

means finding the largest similarity index between species of two different classes. In information 

theory, the information entropy h  measures the surprise that the source emitting the sequences can 

give.16,17 For a single event occurring with probability p  the degree of surprise is proportional to –ln p. 

Generalizing the result to a random variable X  (which can take N  possible values x1, …, xN with 
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probabilities p1, …, pN), the average surprise received on learning the value of X  is –Σ pi ln pi. The 

information entropy associated with similarity matrix R is: 

h R( ) = − rij ln rij
i , j
∑ − 1 − rij( )ln 1− rij( )

i, j
∑         (4) 

Denote by Cb the classes set and by   
) 
R b  the similarity matrix at grouping level b. The information 

entropy satisfies the following properties. (1) h(R) = 0 if rij = 0 or rij = 1. (2) h(R) is maximum if 

rij = 0.5 (when the imprecision is maximum). (3) 
 
h

) 
R b( )≤ h R( ) for any b, i.e. classification leads to a 

loss of entropy. (4) 
  
h

) 
R b1( )≤ h

) 
R b2( ) if b1 < b2 (the entropy is a monotone function of the grouping level 

b). In the classification, each hierarchical tree  corresponds to an entropy dependence on grouping level, 

and an h–b  diagram can be obtained. The equipartition conjecture of entropy production  is proposed, 

as a selection criterion among different variants resulting from classification among hierarchical trees. 

For a given charge or duty, the best configuration is that in which entropy production is most uniformly 

distributed. Equipartition implies a linear dependence, so that the equipartition line  is described by: 

heqp = hmaxb             (5) 

Since the classification is discrete, a way of expressing equipartition would be a regular staircase 

function. The best variant is chosen to be that minimizing the sum of squares of the deviations: 

SS = h − heqp( )2

bi

∑            (6) 

Learning procedures  are implemented as follows.18 Consider a given partition into classes as good  or 

ideal from practical or empirical observations, which corresponds to a reference  similarity matrix 

S = [sij] obtained for equal weights a1 = a2 = … = a  and for an arbitrary number of fictious properties. 

Next consider the same set of species as in the good classification and the actual properties. The 

similarity degree rij is then computed with Equation (1) giving matrix R. The number of properties for R 

and S may differ. The learning procedure consists in trying to find classification results for R, as close as 

possible to the good  classification. The first weight a1 is taken constant, and the following weights a2, 

a3,…, subjected to random variations. A new similarity matrix is obtained using Equation (1) and the 

new weights. The distance between the partitions into classes characterized by R and S is given by: 

D = − 1 − rij( )ln
1 − rij

1− sijij
∑ − rij ln

rij

sijij
∑

     ∀0 ≤ rij ,sij ≤ 1   (7)

 

The result of the algorithm is a set of weights allowing adequate classification. The procedure has been 

applied in the synthesis of complex flowsheets using of information entropy.19 

From the present results and discussion the folllowing conclusions can be drawn. 

1. Many algorithms for classification are based on information entropy. For sets of moderate size an 

excessive number of results appear compatible with data, and the number suffers a combinatorial 
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explosion. However, after the equipartition conjecture, one has a selection criterion between different 

variants resulting from classification between hierarchical trees. According to the conjecture, the best 

configuration is the one in which the entropy production is most uniformly distributed. The method 

avoids the problem of other methods of continuum variables, because for the four compounds with 

constant <11111> vector, the null standard deviation always causes a Pearson correlation coefficient of 

r = 1. The lower level classification processes show lower entropy and may be more parsimonious. The 

good comparison of our classification results, with other taken as good, confirm the adequacy of the 

property vector selected for the molecular structures. Information entropy and principal component 

analyses permit classifying the inhibitors and agree. In general, the classical classes are recognized. 

2. The analysis is in agreement with principal component analysis. It compares well with other 

classification taken as good  based on docking, density functional, molecular dynamics, the Rule of Five, 

absorption, distribution, metabolism, excretion and toxicity. The analysis of the interactions of the 

proposed novel ligand with the reverse-transcriptase active site strongly suggests that the proposed novel 

ligand could be a good potential inhibitor for anti-HIV chemotherapy. 
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