

Proceedings Paper

Designing a Phosphino-Thiosemicarbazone Ligand Capable to Stabilize Coinage Metal Ions ⁺

Isabel Velo-Heleno ¹, Sandra Fernández-Fariña ¹, Lara Rouco ², Miguel Martínez-Calvo ^{1,*} and Rosa Pedrido ^{1,*}

- ¹ Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; mariaisabel.velo.heleno@usc.es (I.V.-H.); e-mail@e-mail.com (S.F.-F.)
- ² affiliations; e-mail@e-mail.com
- * Correspondence: miguel.martinez.calvo@usc.es (M.M.-C.); rosa.pedrido@usc.es (R.P.)
- + Presented at the 26th International Electronic Conference on Synthetic Organic Chemistry; Available online: https://ecsoc-26.sciforum.net.

Abstract: Thiosemicarbazones are interesting organic skeletons due to their great coordinative versatility, their interesting biological and pharmacological properties, as well as their structural diversity. However, the isolation of their monovalent coinage metal complexes, such as Cu(I), Ag(I) or Au(I), is a partially studied field, since co-ligands with soft donor atoms such as phosphines, are required. In this context, our research group has been studying a new family of ligands capable of stabilising coinage complexes without the need for auxiliary co-ligands. To this end, it was decided to incorporate a phosphorus atom into the structure of a thiosemicarbazone kernel. This work presents the design, synthesis and structural characterisation of a new phosphinothiosemicarbazone ligand.

Keywords: ligand; thiosemicarbazone; phosphine; coinage metal ions

1. Introduction

Among the wide variety of organic skeletons reported to date, thiosemicarbazone ligands must be highlighted due to their interesting biological and pharmacological properties, as well as their structural diversity [1]. Nevertheless, in order to obtain their monovalent metal complexes, such as Cu(I) [2], Ag(I) or Au(I) [3], auxiliary co-ligands incorporating soft donor atoms were needed.

At this point, in the last few years we have designed and prepared a new family of thiosemicarbazone ligands featuring a phosphine unit [4]. The phosphine-thiosemicarba-zone ligands were capable of stabilising M(I) complexes without the need for auxiliary co-ligands. For further study, we report herein the design, synthesis and structural char-acterisation of a new phosphino-thiosemicarbazone ligand functionalized with a nitro-phenyl ring. (Figure 1).

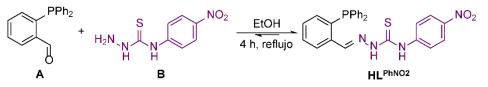


Figure 1. Synthesis of the phosphino-thiosemicarbazone ligand HL^{PhNO2}.

Citation: Velo-Heleno, I.; Fernández-Fariña, S.; Rouco, L.; Martínez-Calvo, M.; Pedrido, R. Designing a Phosphino-Thiosemicarbazone Ligand Capable to Stabilize Coinage Metal Ions. *Chem. Proc.* **2022**, *4*, x. https://doi.org/10.3390/xxxxx

Academic Editor(s): Julio A. Seijas

Published: 15 November 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

2. Experimental Section

The new phosphino-thiosemicarbazone ligand HL^{PhNO2} has been carried out by means of imine condensation reaction (Figure 1). First, 2-diphenylphosphinobenzalde-hyde (A) (0.50 g, 1.7 mmol) and 4-(4-Nitrophenyl)thiosemicarbazide (B) (0.72 g, 3.4 mmol) were mixed and dissolved in absolute ethanol. Then a catalytic amount of p-toluensul-fonic acid was added to promote imine bonds formation. The reaction mixture was refluxed for 4 h using a Dean–Stark trap to remove the released water. The final white crystalline precipitate was isolated by concentration, filtration and washed with diethylether, giving rise to required HL^{PhNO2} .

HL^{PhNO2}: Yield 1.498 g, (91%). Elemental analysis, Calc. for C₂₆H₂₁N₄O₂PS: C, 64.5; H, 4.4; N, 11.6; S, 6.6. Found: C, 64.3; H, 4.4; N, 11.4; S, 6.3 %. MS ESI⁺ (m/z): 483.1 [HL-H]⁻. IR (KBr, cm⁻¹): v IR (KBr, cm⁻¹): v(N-H) 3302 (d), v(C=N + C-N) 1539 (mf), 1514 (f), 1435 (m), v(NO2) 1333 (mf) v(C=S) 1111 (m), 748 (m). RMN ¹H (300 MHz, DMSO-d⁶): δ/ppm, 12.30 (s, 1H, -NH), 10.33 (s, 1H, -NH), 8.87 (d, J= 4.9 Hz, 1H), 8.48–6.82 (m, 18H, Ar-H). RMN ¹³C (126 MHz, DMSO-d⁶): δ/ppm, 175.24 (C=S), 145.22 (C=N), 143.47–123.76 (C-Ar). RMN ³¹P (202 MHz, DMSO-d⁶): δ/ppm, -12.76.

3. Results and Discussion

 HL^{PhNO2} was characterized by the usual techniques for organic compounds. Analytical data are consistent with the ligand stoichiometry. IR spectrum shows the bands corresponding to the NH group at 3302 cm⁻¹, to the imine bond at 1539, 1514 and 1435 cm⁻¹ (Figure 2) and to the C=S thioamide group at 1111 and 748 cm⁻¹. MS ESI⁺ exhibits a peak at 483.1(*m*/*z*) consistent with the monodeprotonated ligand molecule. Suitable crystals for X-ray diffraction were also obtained. The crystal structure corresponds with the oxidised HL^{PhNO2} ligand, that is shown in Figure 3. Main crystallographic data are summarised in Table 1 whereas bond lengths and angles are listed in Table 2. All bond distances and angles are in the order of those found in the literature for thiosemicarbazone and phosphine ligands and do not merit further discussion [4].

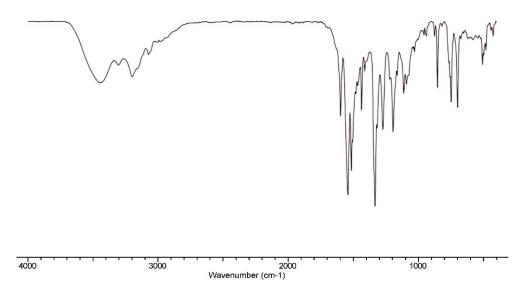


Figure 2. IR spectrum (cm⁻¹) of the phosphino-thiosemicarbazone ligand HL^{PhNO2}.

The asymmetric unit of the HL^{PhNO2} ligand consists of a ligand molecule showing an E conformation with respect to the imine group. In addition, the phosphine skeleton and the thiosemicarbazone branch are oriented towards the same side giving rise to a *syn* conformer. (Figure 3).

Figure 3. Crystal structure of the phosphino-thiosemicarbazone ligand HL^{PhNO2} .

Table 1. Main crystallographic data for HL^{PhNO2} .

Crystallographic Data				
Formula	C26H21N4O2.30PS			
Molecular weight	489.3			
Crystal system	Monoclinic			
Crystal size/mm	$0.70 \times 0.11 \times 0.03$			
Volume/Å ³	2327.1(3)			
Space group	P21/n			
Ζ	4			
a/Å	13.7284(8)			
b/Å	7.2366(5)			
c/Å	23.5622(14)			
$lpha/^{o}$	90			
$\beta^{\prime a}$	96.214(3)			
$\gamma^{/o}$	^o 90			
d/g⋅cm⁻³	1.383			
µ/mm⁻¹	0.191			
F(000)	432			
Interval θ/º	2.41-28.13			
Measured reflexions	33,552			
Independent reflexions [Rint]	5787 [0.0396]			
Residues/e·Å-₃	0.58 and -0.29			
R	0.0392			
wR	0.0889			

Table 2. Selected bond length (Å) and angles (^o) for HL^{PhNOs2}.

Main Bond Distances (Å)					
C8-N4	1.271(2)	C10-P1	1.843(1)		
N4-N3	1.376(2)	P1-C21	1.823(1)		
N3-C7	1.356(2)	C8-C9	1.452(2)		
C7-S1	1.683(2)	P1-C15	1.826(2)		

N1-O1	1.227(2)	P1-O3	1.377(4)	
C7-N2	1.346(2)	C1-N1	1.463(2)	
N4-C8	1.271(2)	N1-O2	1.229(2)	
Main Bond Angles (°)				
C8-N4-N3	117.7(1)	O2-N1-O1	123.6(2)	
N4-N3-C7	119.2(1)	C10-P1-C15	101.27(7)	
N3-C7-S1	118.7(1)	C21-P1-C10	103.88(7)	
N2-C7-N3	114.0(1)	C21-P1-C15	102.48(7)	
N2-C7-S1	127.3(1)			

The HL^{PhNO2} ligand has crystallised with the phosphorus atom oxidised. This fact causes intramolecular hydrogen bonds to be established (Figure 4) involving the hydrogen in the thioamide position [N2-H2N···O1 2.795 Å], which possibly condition the *syn* arrangement adopted by the phosphine skeleton and the thiosemicarbazone branch. In addition, intermolecular hydrogen bonds stablished by the thioamide sulphur and and the hydrazide hydrogen atoms allow the interaction between two neighbouring ligand molecules [N3-H3N···S1 3.461(2) Å].

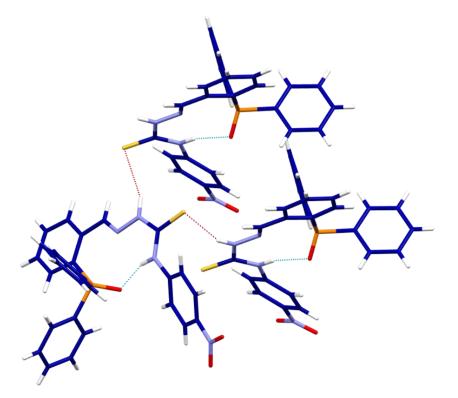


Figure 4. Intra- (light blue) and intermolecular (red) hydrogen bonds HL^{PhNO2}.

The **HL**^{PhNO2} structure in the solid state is worthy of analysis for comparative purposes between the free ligand or when it is bound to different metal ions. By observing its arrangement, it should be noted that the O/S donor atoms are oriented in opposite directions. For this reason, a previous conformational rotation would be necessary to achieve both atoms coordination to the same metal ion.

4. Conclusions

The new phosphine-thiosemicarbazone ligand HL^{PhNO2} has been isolated in high purity and yield. Its crystal structure shows an opposite orientation of oxygen and sulphur

donor atoms, which would imply a conformational rotation prior to coordination to the same metal ion.

References

- (a) Liberta, A.E.; West, D.X. Antifungal and antitumor activity of heterocyclic thiosemicarbazones and their metal complexes: 1. Current status. BioMetals 1992, 5, 121-126. https://doi.org/10.1007/bf01062223; (b) Hu, W.X.; Zhou, W.; Xia, C.N.; Wen, X. Synanticancer activity of thiosemicarbazones. Bioorg. Med. Chem. Lett. thesis and 2006, 16. 2213-2218. https://doi.org/10.1016/j.bmcl.2006.01.048; (c) Bal, T.R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone deriva-tives. *Bioorg. Med.* Chem. Lett. 2005, 15, 4451-4455, https://doi.org/10.1016/j.bmcl.2005.07.046; (d) Bajaj, K.; Buchanan, R.M.; Grapperhaus, C.A. Antifungal activity of thiosemibis(thiosemicarbazones), and complexes. J. Inorg. Biochem. carbazones, their metal **2021**, 225, 111620, https://doi.org/10.1016/j.jinorgbio.2021.111620; (e) Gonçalves, A.C.R.; Carneiro, Z.A.; Oliveira, C.G.; Danuello, A.; Guerra, W.; Oliveira, R.J.; Ferreira, F.B.; Veloso-Silva, L.L.W.; Batista, F.A.H.; Borges, J.C.; de Albuquerque, S.; Deflon, V.M.; Maia, P.I.S. Pt(II), Pd(II) and Au(III) complexes with a thiosemicarbazone derived from diacethylmonooxime: Structural analysis, trypanocidal activity, cytotoxicity and first insight into the antiparasitic mechanism of action. Eur. J. Med. Chem. 2017, 141, 615-631. https://doi.org/10.1016/j.ejmech.2017.10.013.
- 2 Lobana, T.S.; Rekha; Butcher, R.J.; Castiñeiras, A.; Bermejo, E.; Bharatam, P.V. Bonding Trends of Thiosemicarbazones in Mononuclear and Dinuclear Copper(I) Complexes: Syntheses, Structures, and Theoretical Aspects. *Inorg. Chem.* 2006, 45, 1535–1542. https://doi.org/10.1021/ic051018j.
- (a) Casas, J.S.; Castellano, E.E.; Couce, M.; Ellena, D.J.; Sánchez, A.; Sordo, J.C.; Taboada, J. A gold(I) complex with a vitamin K3 derivative: Characterization and antitumoral activity. *Inorg. Biochem.* 2006, 100, 1858–1860. https://doi.org/10.1016/j.jinorg-bio.2006.07.006; (b) Lobana, T.S.; Khanna, S.; Butcher, R.J. Synthesis of a fluorescent gold(I) complex with a thiosemicarbazone, [Au2(3-NO2-Hbtsc)4]Cl2 · 2CH3CN. *Inorg. Chem. Commun.* 2008, 11, 1433–1435. https://doi.org/10.1016/j.inoche.2008.09.023; (c) Molter, A.; Rust, J.; Lehmann, C.W.; Deepa, G.; Chiba, P.; Mohr, F. Synthesis, structures and anti-malaria activity of some gold(I) phos- phine complexes containing seleno- and thiosemicarbazonato ligands. *Dalton Trans.* 2011, 40, 9810–9820. https://doi.org/10.1039/c1dt10885a.
- 4. (a) Castiñeiras, A.; Pedrido, R.; Pérez-Alonso, G. A Convenient Mode to Stabilize MI Metal Ions by Using Thiosemicarbazones. *Eur. J. Inorg. Chem.* 2008, *32*, 5106–5111. https://doi.org/10.1002/ejic.200800708; (b) Castineiras, A.; Pedrido, R. Novel Fluorescent Cationic Silver Thiosemicarbazone Clusters Containing Different Eight-Membered Ag₄S₄ Metallacycles. *Inorg. Chem.* 2009, *48*, 4847–4855, https://doi.org/10.1021/ic900062y; (c) Castiñeiras, A.; Pedrido, R. A thiosemicarbazone ligand functionalized by a phosphine group: Reactivity toward coinage metal ions. *Dalton Trans.* 2010, *39*, 3572–3584, https://doi.org/10.1039/b918962a; (d) Castiñeiras, A.; Pedrido, R.; Aurophilicity in gold(I) thiosemicarbazone clústers. *Dalton Trans.* 2012, *41*, 1363–1372, https://doi.org/10.1039/c1dt11680k. (e) González- Barcia, L.M.; Romero, M.J.; González Noya, A.M.; Bermejo, M.R.; Maneiro, M.; Zaragoza, G.; Pedrido, R. The Golden Method Electrochemical Synthesis Is an Efficient Route to Gold Complexes. *Inorg. Chem.* 2016, *55*, 7823–7825, https://doi.org/10.1021/acs.inorg-chem.6b01362.