

GIVING BEEKEEPING GUIDANCE BY COMPUTATIONAL-ASSISTED DECISION MAKING

EU Horizon 2020 Research and Innovation Action

A SPATIALLY RESOLVED TEMPERATURE MEASUREMENT SYSTEM FOR A HONEYBEE COLONY BROOD BOX

Adam McVeigh, Michael I Newton, Costas Tsakonas and Martin Bencsik

Nottingham Trent University

• ٠ • • •

- Honeybee colonies need suitable temperatures.
- Require 32-35°C for brood rearing.
- A single sensor provides a snapshot of colony.
- More sensors provides a clearer picture.
- Colony temperature management.
- High resolution sensor array.
- 480 negative coefficient temperature sensors.

·IIIII I∙B-GOOD

- British National Hive
 - Roof **————**—
- Adapted Super with electronics –
- Cables joining frames to electronics
- Brood Box with frames inside with thermistors
- Cable linking system to Raspberry Pi-

- Schematic of electronics.
- 10 frames each with 48 negative temperature coefficient thermistors.
- Each frame connects to three 16-Channel Analog Multiplexers.
- Multiplexers connect to Teensy 3.5 microprocessors.
- Two Teensy 3.5s

NTU

Linked to a Raspberry Pi

University

Nottingham Trent

- A prototype system.
- Sensors embedded between four sheets of foundation wax.
- Protect electronics.
- More appealing to bees.

This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 817622.

3rd International Electronic Conference on Applied Sciences 1-15 Dc 2022

·IIII ·B-GOOD

ıl∥I∙B-GOOD

- First system of frames introduced to a colony.
- Bees chewed away foundation wax.
- Exposing electronics, which still collected data.
- Not normal frame use.
- Wax too thick.
- Cells not aligned suitably.
- Electronics?

This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 817622.

3rd International Electronic Conference on Applied Sciences 1-15 Dc 2022

NTU

University

- Second version.
- Sensors laid on foundation wax.
- 1 sheet of foundation wax.
- Expected that less sheets of foundation wax would improve appeal to a colony.

·IIIII∙B-GOOD

- The second system with a swarm.
- Built normal honeycomb.
- Including the side with electronics.
- Cells were built over the sensors.
- Used for brood rearing.
- Eggs were observed.
- The system is accepted by the colony and is suitable for normal use.
- Electronics did not cause refusal.

- Sensors tested before the colony introduced.
- Consistent measurements.
- Small error in line with guoted tolerances.
- Figure displays measurements from all ۲ sensors in the afternoon (green) and evening (red).
- Consistent with ambient air temperatures.
- Data has been linear scaled to • compensate for systematic and random errors. We assume the scaling factors remain constant.

This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 817622.

Red is between 21:47:45 and 22:17:45. Green is between 14:27:45 and 14:57:45

A spatially resolved temperature measurement system for a honeybee colony

Frame No 3 - May 26 03:02:45 2022

x axis (cm)

brood box Adam McVeigh, Michael I Newton, Costas Tsakonas and Martin Bencsik

Spatially resolved temperature measurements collected. y axis (cm) 0 & y axis (cm) Figure shows temperatures on 25°C Two time points on the same day. Frame 5 is being used for brood x axis (cm) x axis (cm) Frame No 3 - May 26 16:02:30 2022 Frame No 5 - May 26 16:02:30 2022 Frame 3 is not being used by the y axis (cm) 01 & y axis (cm) 25°C Spatial variation in temperature on both frames.

•

•

two frames.

rearing.

colony.

This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 817622.

3rd International Electronic Conference on Applied Sciences 1-15 Dc

Frame No 5 - May 26 03:02:45 2022

NTU

x axis (cm)

University

Nottingham Trent

25°C

25°C

ıI∥I∙B-GOOD

- Spatially resolved temperature measurements of a colony.
- Temperature measurements using an array of thermistors on a sheet of foundation wax.
- Using a single sheet of wax is important in determining acceptance.
 - Second system was accepted and used normally.
 - Minimal disruption of the foundation wax is optimum.
 - Recording distinctive features such as brood temperatures.
 - Quantify spatial temperature variation across the colony.
 - Data to aid understanding of colony thermal dynamics.

GIVING BEEKEEPING GUIDANCE BY COMPUTATIONAL-ASSISTED DECISION MAKING

EU Horizon 2020 Research and Innovation Action

A SPATIALLY RESOLVED TEMPERATURE MEASUREMENT SYSTEM FOR A HONEYBEE COLONY BROOD BOX

Adam McVeigh, Michael I Newton, Costas Tsakonas and Martin Bencsik

Nottingham Trent University

