Electronic structures and photovoltaic properties of copper–, sodium– and ethylammonium–added CH₃NH₃Pbl₃ perovskite compound

OSAKA GAS CHEMICALS Masanobu Okita, Sakiko Fukunishi, Tomoharu Tachikawa, Tomoya Hasegawa

Introduction

Introduction

O Purpose of this study

Investigation of the effects of adding copper, alkali metals, and organic cations to perovskite crystals through experiments and first-principles calculations

Device fabrication

Addition of DPPS to enhance heat resistance of perovskite crystals Increase of heat treatment temperature in steps to improve quality of the perovskite film

First principles calculations

Effect of Br substitution on energy gap

Model	Δ <i>Ε</i> (eV)	E _g (eV)	<i>m</i> _e */ <i>m</i> ₀	<i>m</i> _h */ <i>m</i> ₀
MAPbl₃	0	1.51	0.071	0.100
MAPbBr ₃	-160	2.26	0.224	0.100
E : Total E _g : Ener m _e */m ₀ , r	energy gy gap m _h */ <i>m</i> ₀ :			

Effective mass ratio of electrons and holes

$$V_{\text{OC}} \approx \frac{E_{\text{g}}}{q} - \frac{kT}{q} \log\left(\frac{A}{J_{\text{SC}}}\right)$$

 V_{OC} : Open-circuit voltage
 E_{g} : Energy gap

Br substitution increases $E_g \rightarrow Possibility$ to improve V_{OC}

First principles calculations

Effect of Cu, Na and EA on crystal structure stability

Results and discussion

J-V curves and parameters

Results and discussion

Total energies and device durability

Dovicos					Ctability/0/1
Devices	0 week	1 week	2 weeks	4 weeks	Stability (76)
CuBr ₂ 2 % NaBr 2 %	8.36	7.34	6.61	6.75	79.1
Cu 2 % Na 2 % EABr 5 %	8.67	8.34	8.34	7.98	96.2

First principles calculations

Results of first-principles calculations using the partial substitution structure model

Results and discussion

Model of the excitation process

Conclusion

○ Halogen substitution

 \rightarrow Affects energy gap

Correspondence between calculation and experimental results

 \bigcirc Stabilization of crystal structure by EA substitution → Enhanced device durability

Possibility of predicting durability by first-principles calculations

Co-adding effects of Cu and Na are discussed using the band structure

Possibility of accelerated carrier generation and reduced loss of generated carriers

 A method to study the effects of adding compounds using firstprinciples calculations and experimental results
Applicable for use with other alkali metals and organic cations

Devices	I ₁₀₀ /I ₂₁₀	Lattice constant (Å)	Crystallite size (Å)	I _{211 (tetragonal)}
Standard	8.7	6.262(1)	697	1.00
CuBr ₂ 2 % NaBr 2 %	2.6	6.271(1)	679	0.60
CuBr ₂ 2 % NaBr 2 % EABr 5 %	3.1	6.261(1)	674	0.81