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Lab-On-Chip Devices

 Lab-On-Chip Devices (LOC) are also called as

(µ-TAS) or are the miniaturized measurement

devices.

 These systems aims to integrate several steps

into a single, automated device or ‘chip’.

1. Sample Collection

2. Sample Preparation

3. Biomixing and Bioseparation

4. Sample Transfer for Analysis

5. Detection and Results

 The LOC systems usually consist of two units

 A set of microfabricated chambers and

channels,

 A mechanism of microfluidic pumping unit for

fluidic movement.
3

Fig. Protocols of

Analytical

Chemistry

Fig. (a) Block Diagram of μ-TAS

(b) Assembly Layout of μ-TAS.

(a)
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Significance of Qualitative Rapid Biosensing
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 Compatible to Resource limited rural areas.

 Prefered for Rampant disease management.

 Mass detection and disease control in

Pandemic Situations like COVID-19.

 Early detection and control at the very first

acute stage of infection.

 POCT and faster health recovery



Need of Plasma Separation

 Plasma contains all necessary Proteins, RNAs, DNAs, Enzymes facilitates testing through

Biosensing Card Testing Platform

 Both turn around time and accuracy of diagnosis results are improved after RBCs and

WBCs removal.

 Plasma Testing forms the bases of Biosensing Cards with Greater Reliability

 Plasma Samples are much easier in handling and storage as compared to whole blood

sample

 Plasma itself rich in anticoagulant Anti-Thrombin-III, so it cannot be easily coagulated.
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Microfluidics and Bioseparation

 Microfluidics is the scientific/engineering discipline underlying µ-TAS

 Process or manipulate small amounts of fluidics, i.e. 2-5ml, using channels

measuring from tens to hundreds of micrometers.
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Fig. (a) Schematic Diagram of Microfluidics Lab-On-Chip Device; (b) Blue Print of Biomedical Chip

(a) (b)



Blood Components and Plasma Separation 

Techniques
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PLASMA SEPARATION 

TECHNIQUES

Active 
Separation

Passive 
Separation

(Slower and employ

External Forces)
(Rapid and Self-Driven)

 Active separation methods

exploit external forces and

makes use of electrical,

magnetic, dielectrophoretic,

acoustics properties of blood

cells.

 Passive separation methods

employ internal rheology of

blood components and simply

use differences in cell properties

for self-separation, such as the

size, weight, shape, or stiffness.



Active Plasma Separation
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As described by Stokes’ Law, the sedimentation rate of a particle, νr , due

to centrifugal force is:

𝒗𝒓 =
𝒅𝒓

𝒅𝒕
=

𝝆𝒑 − 𝝆𝒎 𝒓 .𝒅𝟐 . r.𝝎𝟐

𝟏𝟖.𝜼𝒎 (𝒓)
and

Where,

𝝆𝒑 is the particle density,

𝝆𝒎(r) is the media density at a given r,

d is the diameter of the particle,

r is the radial distance from the rotation center,

ω is the angular velocity, 𝜼𝒎(r) is the media viscosity at a given radius

and RCF is relative centrifugal force.

 Centrifuge-Tube Based (Fig. A)

 CD-based (Fig.B)
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Passive Plasma  Separation
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 Microfluidics-based (Fig.A)

Plasma follows bifurcations

through Cell-Free Region due to

Newtonian Behaviour.

 Microfilters-based (Fig. B)

Microfilters are also preferred

for size selection trapping and

extraction of target particles.

B

A



Literature Survey on Plasma Separators

1. Active Devices based on Centrifugation

 Amasia and Madau et.al in 2010, fabricated a multilayer compact-disc

centrifugal microfluidic device using traditional plastics machining

techniques.

 Moore et al. in 2011, fabricated capillary valves in the centrifugal

microfluidic disc by designing patterned surfaces, emphasizing on the 3D

Printing Techniques.
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Fig. Device Structure and Spin profile graph detailing rotational velocity over time during the on-disc plasma separation

process.



2.  Passive Devices (Miniaturized On-Chip 

Separators) fabricated using various techniques
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2.1. PDMS Soft Lithography

 Sara et.al (2006)- Separation Membrane-assisted Microfiltration and capillary force

driven plasma extraction of high purity in lesser time (Fig. A)

 Park et.al (2015) – Retarded flow-assisted sedimentation, microfiltration and free-

flow wetting of ethanol-treated collection channel (Fig. B)

 Madadi et.al (2015) - Separation Science, Fluid Dynamics, and Blood Rheology

(Fig. C) A

C



2.2. Devices Fabricated Using Hybrid Technologies

Integration of Hybrid Chips fabricated using Standard Photolithigraphy and PDMS

Soft-Lithography

 Sollier et.al (2009) - Innovative device is based on the lateral migration of red cells

and the resulting cell-free layer, which is used to supply geometric singularities (an

ear-cavity or a corner-edge) and locally enhanced clear plasma region (Fig. A)

DLP 3D Printing, SU-8 Photolithography followed with PDMS Soft Lithography.

 Maria et.al (2016) - Capillary flow of blood in a microchannel with differential

wetting, to induce a self- built-in filter for plasma separation and subsequent

chromatographic detection of glucose (Fig. B)

2. Passive Devices……contd.

A
B



2.3. CNC Micromachining

 Su et. al (2020), modular universal plasma-separation microdevice based on

immunocapture and size filtering (Fig. A).

2.4. DLP 3D Printing

 Liu et. al (2015) introduces membrane based superhydrophobic clamshell style Plasma

Separator. Gravitation assisted sedimentation and membrane-based filtration, while

Superhydrophobic Surface-assisted Size extraction of plasma (Fig. B).

2.5. SLA 3D Printing

 Kim et. al (2022) – Glass fibre filter based erythrocyte binding, self-pressure driven plasma

separation and multiple LFA diagnosis (Fig. C).

2. Passive Devices……contd.
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