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Abstract: Heavy metals are of great concern worldwide in terms of environmental pollution due to 

their effects such as persistence in the environment, bioaccumulation, and toxicity for organisms. 

These pollutants in non-biodegradable inorganic form are released into water, soil and air from 

different industrial sectors. Lead ions are also a toxic heavy metal in terms of human health and 

permanent in terms of the ecosystem, which is included in this pollutant group. Among the many 

treatment methods, adsorption is an inexpensive, eco-friendly and efficient process for removing 

Pb ions from water contaminated with lead ions. The most important detail that draws attention 

both in our research in the literature and in our own studies is that very high removal efficiencies 

of lead ions can be obtained with many different inorganic and organic adsorbents. Such high re-

moval efficiencies cannot be obtained for other heavy metals and metalloids. Therefore, it was aimed 

to reveal the difference in the adsorption process of lead in this study. The physicochemical and 

biological properties of lead ion and the effects of specific properties such as amphoteric structure, 

free electron, post-transition metal, and the low melting temperature were investigated accordingly. 
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1. Introduction 

Although the restriction of anthropogenic activities during the COVID-19 pandemic 

process minimized the pressure on environmental pollution, the rapid normalization and 

growth process in the fields of energy, agriculture and industry rapidly increased envi-

ronmental pollution. Pollutants that cause environmental pollution are toxic and perma-

nent. Generally, heavy metals take the first place in the environmental toxic substances 

class and cause significant damage by affecting the entire ecosystem [1,2]. These damages 

are due to their non-biodegradability, high toxicity, and large discharges into the envi-

ronment [3,4]. 

Lead has a toxic effect for all living groups due to its properties such as entering the 

food chain, being absorbed and accumulating in the tissues [5]. It is a non-biodegradable 

metal that can cause diseases such as cancer, anemia, kidney failure, neurological effects 

in humans [6–9]. In particular, Pb emissions are high as a result of industry-based anthro-

pogenic activities (automobile industry, tetra-ethyl production, battery production, cable 

production, ceramics industry, gasoline) [10]. Pb is a pollutant with a high molecular 

weight and the most global spread compared to other heavy metals, and it is an important 

factor of water pollution. In this direction, Pb removal from different water environments 
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is one of the priority tasks of all countries in the world [11,12]. The most important reason 

for this priority is that Pb is one of the most stable and toxic ions in various aquatic eco-

systems. Table 1 shows some specific features, sources, and permissible limit values of Pb 

on an international scale [13–15]. 

Table 1. Specific properties, sources and international limits of Pb [13–15]. 

Permissible Limits 

WHO USEPA EPA 

0.01 mg/L 0.01 mg/L 0.015 mg/L 

Properties 

Density Atomic Weight Heat of fusion Heat Capacity 

11.34 g/cm3 207.2 g/mol 4.77 kJ/mol 0.13 J/g K 

Electron affinity Boiling point Melting Point 

35.1 kJ/mol 1740 °C 327.5 °C 

Sources 

Metal plating, Paint, Laundry process, Mining sector, Battery manufacturing, Steel in-

dustries, Alloys, Ceramics, Plastics, Glassware 

For years, a wide variety of treatment methods have been applied to remove heavy 

metals from receiving environments. For example; electrochemical processes [16], chemi-

cal precipitation and coagulation [17], filtration method (membrane systems) [18,19], ion 

exchange [20,21] and adsorption [22,23]. Due to the disadvantages such as yield variabil-

ity, high cost, large area requirement in these treatment processes, adsorption, which is a 

physico-chemical increase method, comes to the fore with advantages such as easy ap-

plicability, low cost, adsorbent regeneration [24]. Many types of adsorbent/biosorbent (mi-

crobial biomass, seaweeds, waste sludge, agricultural wastes, natural wastes, natural min-

erals, water-based wastes) have been applied to remove Pb from aqueous solutions [25]. 

The most important detail that draws attention both in the researches in the literature 

and in our own studies is that very high removal efficiencies of lead ions can be obtained 

with many different inorganic and organic adsorbents. Such high removal efficiencies can-

not be obtained for other heavy metals and metalloids. Therefore, in this study, it was 

aimed to reveal the physico-chemical and biological properties of lead ion and the effects 

of specific properties such as amphoteric structure, free electron, post-transition metal, 

and low melting temperature on the adsorption process of lead in order to reveal the dif-

ference in the adsorption process of lead. 

2. Materials and Methods 

“Web of Science Core Collection; Science Direct, Springer, Wiley, Taylor & Francois, Sco-

pus” (Clarivate Analytics®, Boston, USA) and “Google Scholar” (Googleplex, Mountain View, 

California, United States) were the databases used in this study. Bibliometric analysis was 

performed based on these databases.  

First, a general search was performed using the keywords “lead adsorption/biosorp-

tion”, “adsorbent/biosorbent effect”, and “high ad-sorption efficiencies” in the basic search tool. 

For this research, the search has been narrowed down to specific In this context, the key-

words “free electron”, “amfoter structure”, “Liquid Metal”, “low melting temperature”, “weak 

metal”, “post-transition metal” were researched to cover the last 4 years 40 articles were 

evaluated according to the field of interest of this research. In addition, the applications 

including the adsorption processes related to Pb purification, which were done before in 

the study, were carried out according to international experimental procedures [26–28].  

3. Results 
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The most important detail that draws attention both in the researches in the literature 

and in our own studies is that very high removal efficiencies of lead ions can be obtained 

with many different inorganic and organic adsorbents. This situation is associated with 

some properties and factors specific to Pb. 
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3.1. Low Melting Liquid Metal State 

Low melting point metals and post-transition metal alloys are materials with admi-

rable properties that are described as “liquid metals” in the literature. Some specific prop-

erties of liquid metals (fluidity, flexibility, conductivity, alloying potential) are properties 

that do not coexist in other metals and materials. Due to these interesting properties, these 

metals are used in many sectors [29,30]. Mercury (Hg), gallium (Ga), rubidium (Rb), ce-

sium (Cs) and francium (Fr) are included in this group because liquid metals are typically 

in liquid form at ≤23 ± 2 °C (room temperature) levels [31]. In order to increase the access 

and application of liquid metals, which are limited in terms of both need and use today, 

the room temperature definition was increased to 330 °C and post-transition metals (in-

dium, thallium, tin, lead (Pb) and bismuth) were added to this group (Figure 1) [32,33]. 

 

Figure 1. (a) Bubble dispersions of liquid metals (such as surface layering, alloy formation) (b) Liq-

uid metal potential: internal and external factors and possible reactions; (c) Post-transition metals 

(blue) in the periodic table and those considered as post-transition metals (gray and light orange) 

(adapted from [32]). 

In terms of current needs and heavy metal pollution removal, post-transition metals 

(especially Pb) have different electron arrangement for metallic bonding than other metal 

species. This increases the polarizing ability and promotes the tendency to form covalent 

bonds. Electron state and liquid nature provide the ability for Pb to exhibit both metallic 

and non-metallic properties (surface stratification). Some non-simple properties of Pb and 

liquid metals are shown in Figure 1. 

3.2. Post-Transition Metal and Electron Distribution 

Post-transition metals are also called weak metals in the literature. Post-transition 

group metals are in the p block of the periodic table, and Pb is also in this group. This 

group, including Pb, is between metalloids and transition metals. At this point, they are 

denser than transition metals and less densely electro-positive than other metals (alkali 

and alkaline earth groups) [34,35]. The weak metals class includes aluminum, gallium, 

indium, tin, thallium, lead, and bismuth (see Figure 1c). As seen in Table 1, Pb is a blue-

silver mixed post-transition metal with an atomic number of 82 and an atomic mass of 

207.19, and has 4 stable isotopes. Although the structure of Pb is surrounded by 4 open 

electrons, it usually takes +2 valence instead of +4 in different structures. The other 2 
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electrons can simply be ionized. The 2-electron effect can be an effect factor in the adsorp-

tion process and other applications. 

3.3. Amphoter/Amphoteric Structure 

In the fields of Environment and Chemistry, amphoteric/amphoteric structure means 

that it can react with both acid and base. It means “Ampho: both”, and an amphoteric metal 

has a reversible effect like a base in an acid medium, and an acid in a basic medium [36,37]. 

The Brønsted-Lowry acid-base theory also confirms this. In other words, they are amphi-

protic molecules that can donate or accept a proton (H+). Amphoteric oxides consist of 

metal groups. Many metals (such as zinc, tin, lead, aluminum and beryllium) have the 

potential to form amphoteric oxides or hydroxides. In terms of Pb, the amphoteric effect 

may play a key role in the adsorption/biosorption processes according to the adsorbent 

structure. 

PbO + 2HCl → PbCl2 + H2O (1) 

PbO + 2NaOH + H2O → Na2[Pb(OH)4] (2) 

3.4. Adsorption/Biosorption Pre-Treatment Studies 

Among the many treatment methods, adsorption is an inexpensive, environmentally 

friendly and efficient process for removing Pb ions from water contaminated with lead 

ions. The most important detail that draws attention both in the researches in the literature 

and in the laboratory-scale pretreatment studies we have done is that very high removal 

efficiencies of Pb ions can be obtained with many different inorganic/organic adsorbent 

and biosorbent. In this case, as we mentioned in the conclusion section, it is due to some 

specific properties and the adsorbent/biosorbent structures (surface analysis, pore distri-

butions) used [15,38–40]. 

 

Figure 2. Pre-treatment values for Pb made with different adsorbent/biosorbents. 

4. Discussion 

Adsorption and biosorption processes are methods that allow the use of different 

sorbents, and they are especially used in the purification of heavy metals from the aquatic 

ecosystem. Pb is also successfully removed from receiving water environments by these 

methods. The interesting point is that the removal of Pb with each sorbent is high 
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compared to other metals. It can be said that this depends on some specific factors or sit-

uations. We can list them as follows: 

1. Active components (pectin, catechin, lignin, etc.) in the structures of adsorbents and 

biosorbents and functional groups (carboxyl:-O, amines: -NH, and hydroxyl: -OH) of 

these sorbents can show a strong interaction with Pb. 

2. The amphoteric/amphoteric nature of Pb may increase the removal rate. 

3. Another factor is that some of the physical properties of Pb (high density, molecular 

weight, etc.) are different from those of other metals. 

4. Being in the liquid metal group and the free 2 electron distribution can affect the 

adhesion to the surface of the sorbents in the adsorption mechanism. 

5. The nature of the sorbents, their amphoteric properties, the modification stages ex-

plain the bonding and sorption mechanisms with Pb. 
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