

The 3rd International Electronic Conference on Applied Sciences 01–15 DECEMBER 2022 | ONLINE

> applied sciences MDPI

Reasons for high adsorption efficiencies on lead removal from aquatic solution

Hakan Çelebi, Tolga Bahadır, İsmail Şimşek, Şevket Tulun

Department of Environmental Engineering, Aksaray University, 68100, Aksaray, Turkey

https://cevre.aksaray.edu.tr/Akademik-Personel?l=en

Agenda Style

0

0

Introduction

General properties of lead-Heavy metal definition-Treatment methods and adsorption-Yield and specific features

2

01

Materials and Methods

"Science Direct, Springer, Wiley, Taylor & Francois, Scopus" and "Google Scholar" were the databases used in this study.

Results

Low Melting Liquid Metal State-Post-Transition Metal, Electron Distribution-Amphoter/Amphoteric Structure-Sorption Studies

Discussion

Explanations and evaluations on yield and specific properties.

Introduction

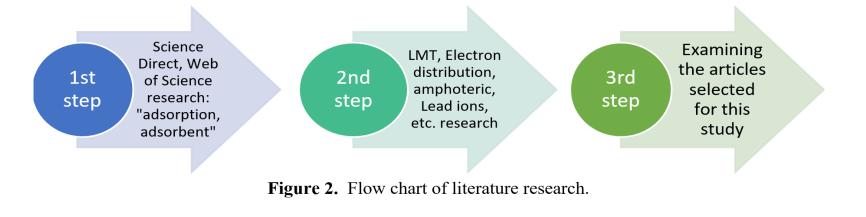
Although the restriction of anthropogenic activities during the COVID-19 pandemic process minimized the pressure on environmental pollution, the rapid normalization and growth process in the fields of energy, agriculture and industry rapidly increased environmental pollution. Pollutants that cause environmental pollution are toxic and permanent. Generally, heavy metals take the first place in the environmental toxic substances class and cause significant damage by affecting the entire ecosystem [1, 2]. These damages are due to their non-biodegradability, high toxicity, and large discharges into the environment [3, Lead has a toxic effect for all living groups due to its properties such as entering the food chain, being absorbed and accumulating in the tissues [5]. It is a non-biodegradable metal that can cause diseases such as cancer, anemia, kidney failure, neurological effects in humans [6-9]. In particular, Pb emissions are high as a result of industry-based anthropogenic activities (automobile industry, tetra-ethyl production, battery production, cable production, ceramics industry, gasoline) [10]. Pb is a pollutant with a high molecular weight and the most global spread compared to other heavy metals, and it is an important factor of water pollution. In this direction, Pb removal from different water environments is one of the priority tasks of all countries in the world [11, 12]. The most important reason for this priority is that Pb is one of the most stable and toxic ions in various aquatic ecosystems. Table 1 shows some specific features, sources, and permissible limit values of Pb on an international scale [13-15].

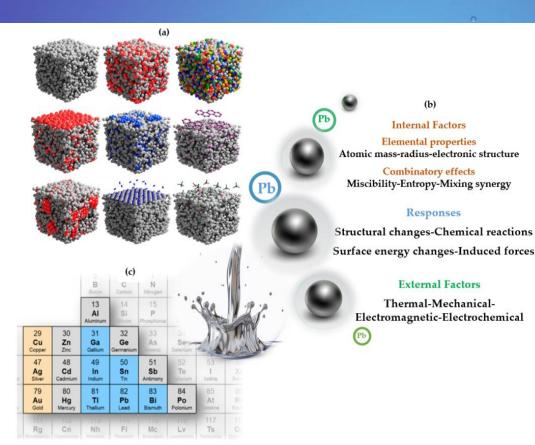
		Actin	c Ti	n Pa	lum Urani	Np Neptunka	94 Pu Piktorika	95 Americiu		n B	k Cali		Es l	Fm I	Md M	lo L	03 . Г
		5 Lu Lanthe 138			Neody	d Pm			Gadolic Gadolic 157.	d T sum Tert	b [prosium H	olmium E	irblum T	Tm Ytte	rbiumn Lut	71 .U atium 4,97
87 Fr Franclum	88 Ra Radium	89-103 Actinoids	104 Rf Rutherdardium	105 Db Dubnium	106 Sg Seeborgium	107 Bh Bohrium	108 Hassium	109 Mt Aeitnerium	110 Ds Dametaction	111 Rg Restaurs	112 Cn Copersider	113 Nh Nihoniu		m Moscoviu		117 Ts Tennossine	0 Ogan
55 Cs Caesium 132.91	56 Ba Barlum 133.33	57-71 Lanthanoids	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 TI Thalliur 204.38		83 Bi Bismuti 208,98		85 At Astatine	8 R Rac
37 Rb Rubidum 85.468	38 Sr Strontium 87.62	39 Y Yturium 88.906	40 Zr Zirconium 91.224	41 Nb Nioblum 92,906	42 Mo Majbowani 95,95	43 Tc Texcretiums		45 Rh Rhodium 102.91	46 Pd Patiadium 106.42	47 Ag Silver 107.42	48 Cd Cadmiun 112.42			51 Sb Antmor 121.76		53 lodine 129.90	5 X Xer 131
19 K Potassium 39.098	20 Ca Calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanlum 47.867	23 V Vanadium 50.942	24 Cr Chromium 51.996	25 Mn Mangarawa 54.938	26 Fe Iron 55.846	27 Co Cobalt 58.933	28 Ni Nickel 58.693	29 Cu Cooper 83.546	30 Zn 2inc 85.38	31 Galiun 69.723		m Arsenic		35 Br Bromine 79.904	3 K Krys 83.3
11 Na Sodium 22.990	12 Mg Magnesium 24.305											13 Al Akuminu 26,962		15 P Phosphore 30.974	16 S Sulfur 32.066	17 CI Chlorine 35.453	1 A Arg 39.1
3 Li Lytium 6.941	4 Be Berillium 9.012											5 B Boron 10.81	6 C Carbon 12.011	7 N Nitroger 14.007		9 F Fluorine 18.998	1 N Ne 20.1
1 H Hydrogen 1.008																	Hell 4.0

Figure 1. Periodic table of elements. Metals/metalloids are highlighted on the basis of the main characteristic that define them as "heavy": density > 5 g/cm³ (blue); toxic (red); rare (green); synthetic (yellow).

Permissible Limits													
WHO USEPA EPA													
0.01 mg/L	0.01 mg/L 0.01 mg/L 0.0 ⁴												
Properties													
Density	Atomic Weight	Heat of fusion	Heat Capacity										
11.34 g/cm ₃	207.2 g/mol	4.77 kJ/mol	0.13 J/g K										
Electron affinity	Boiling point												
35.1 kJ/mol	1740	327.5 °C											
Sources													
Metal plating, Paint, Laundry process, Mining sector, Battery manufacturing, Steel industries, Alloys, Ceramics, Plastics, Glassware													

Table 1. Specific properties, sources and international limits of Pb [13-15].


Introduction


For years, a wide variety of treatment methods have been applied to remove heavy metals from receiving environments. For example; electrochemical processes [16], chemical precipitation and coagulation [17], filtration method (membrane systems) [18, 19], ion exchange [20, 21] and adsorption [22, 23]. Due to the disadvantages such as yield variabil-ity, high cost, large area requirement in these treatment processes, adsorption, which is a physico-chemical increase method, comes to the fore with advantages such as easy applicability, low cost, adsorbent regeneration [24]. Many types of adsorbent/biosorbent (microbial biomass, seaweeds, waste sludge, agricultural wastes, natural wastes, natural minerals, water-based wastes) have been applied to remove Pb from aqueous solutions [25].

Materials and Methods

Bibliometric analysis

"<u>Web of Science Core Collection; Science Direct, Springer, Wiley, Taylor & François, Scopus</u>" (Clarivate Analytics®, Boston, USA) and "Google Scholar" (Googleplex, <u>Mountain View, California, United States</u>) were the databases used in this study. Bibliometric analysis was performed based on these databases.

Figure 1. (a) Bubble dispersions of liquid metals (such as surface layering, alloy formation) (b) Liquid metal potential: internal and external factors and possible reactions; (c) Post-transition metals (blue) in the periodic table and those considered as post-transition metals (gray and light orange) (adapted from [32]).

Results

Low Melting Liquid Metal State

Low melting point metals and post-transition metal alloys are materials with admirable properties that are described as "liquid metals" in the literature. Some specific prop-erties of liquid metals (fluidity, flexibility, conductivity, alloying potential) are properties that do not coexist in other metals and materials. Due to these interesting properties, these metals are used in many sectors [29, 30]. Mercury (Hg), gallium (Ga), rubidium (Rb), cesium (Cs) and francium (Fr) are included in this group because liquid metals are typically in liquid form at ≤23±2 0C (room temperature) levels [31]. In order to increase the access and application of liquid metals, which are limited in terms of both need and use today, the room temperature definition was increased to 330 °C and post-transition metals (indium, thallium, tin, lead (Pb) and bismuth) were added to this group (Figure 1) [32, 33].

Post-Transition Metal and Electron Distribution

Post-transition metals are also called weak metals in the literature. Post-transition group metals are in the p block of the periodic table, and Pb is also in this group. This group, including Pb, is between metalloids and transition metals. At this point, they are denser than transition metals and less densely electro-positive than other metals (alkali and alkaline earth groups) [34, 35]. The weak metals class includes aluminum, gallium, indium, tin, thallium, lead, and bismuth (see Figure 1c). As seen in Table 1, Pb is a blue-silver mixed post-transition metal with an atomic number of 82 and an atomic mass of 207.19, and has 4 stable isotopes. Although the structure of Pb is surrounded by 4 open electrons, it usually takes +2 valence instead of +4 in different structures. The other 2 electrons can simply be ionized. The 2-electron effect can be an effect factor in the adsorption process and other applications.

• H Nearogens									_								о Не неко
3	0		1.120.2012	Metal			inide		_	Nonmet		8	6	2	8	9 /	0
Li	Be			ine Earth				ropertie		Halogen		B	C	N	0	F	Ne
Litio	Benilo		77	ition Me	tal		alloid			Nobel go	as	Boro	Carbono	Nitrógeno	Oxigeno (16)	Flúor	Nedn
Na	Mg Mognesio	2	Lanth	nanide		Pos	t-transit	tion Meto	al			AL	siler.	P	S Azutre	CI	Ar Argón
D K Potasio	Ca Catcio	B Sc Escandio	Ti Tianio	er vanadio	S Cr Cromo	e Mn _{Manganeso}	e Fe	CO Cobalto	B Ni Niquel	20 Cu Cobre	S Zn Zinc	3 Ga Colio	e Ge	a As Arsénico	e Se seinnio	Br	S Kr Kriptón
SP Rb Rubidio	99 Sr Estroncio	B Y Itrio	Sinconio	Niobio	B Mo Molibdeno	Tc Tc	⇔ Ru Rutenio	Rh Rodio	⊗ Pd Palodio	S Ag Pioto	Cd Codmic	(9 In Indio	© Sn Estaño	a Sb Antimorio	® Te Teurio	30 Voda	S Xe Xendr
Cs Cesta	Ba Barro	La-Lu	92 Hf Hathio	70 Ta Tantalio	® Wolframio	® Re Renio	© Os Osmio	en la companya de la	Tratino	B Au oro	ee Hg Mercuria		e Pb Plomo	Bi Bismuto	Po Potonio	At Astoto	Rn Rn
e Fr Francio	Ra Radio	Ac-Lr	B Rf	Db Dubnio	Sg Seaborgio	Bh Bohrio	HS Hasslo	m Mt Meitnerio	Darmstatio	® Rg Roentgerilo	12 Cn Copernicio	® Nh Nihonio	B Fl Flerovio	б Мс Моксоліо	10 LV Livermonio	Ts Teneso	© Og Oganesón
		Da La Lantano	© Ce cerio	99 Pr Praseodimio	∞ Nd Neodimio	@ Pm Prometio	© Sm Samario	EU Europio	Gd Cadolinio	Tb terbio	© Dy Disprosio	er Ho Hotmio	Er	Tm Tulio	P P Rerbio	De Lu Lutecio	
		B Ac Actimio	STh Tario	9 Pa Protactinio	20 Urania	® Np Neptunio	e Pu Plutanio	S Am Americão	Cm Curio	B B Berkelic	California	99 Es Einstanio	GO Fm Fermio	® Md Mandelevia	NO Nobelia	B Lr Laurencio	

Periodic Table of the Elements

0

Amphoter/Amphoteric Structure

fields of Environment and Chemistry, In the amphoteric/amphoteric structure means that it can react with both acid and base. It means "Ampho: both", and an amphoteric met-al has a reversible effect like a base in an acid medium, and an acid in a basic medium [36, 37]. The Brønsted-Lowry acidbase theory also confirms this. In other words, they are amphiprotic molecules that can donate or accept a proton (H+). Amphoteric oxides consist of metal groups. Many metals (such as zinc, tin, lead, aluminum and beryllium) have the potential to form amphoteric oxides or hydroxides. In terms of Pb, the amphoteric effect play key role the may а in adsorption/biosorption processes according to the adsorbent structure.

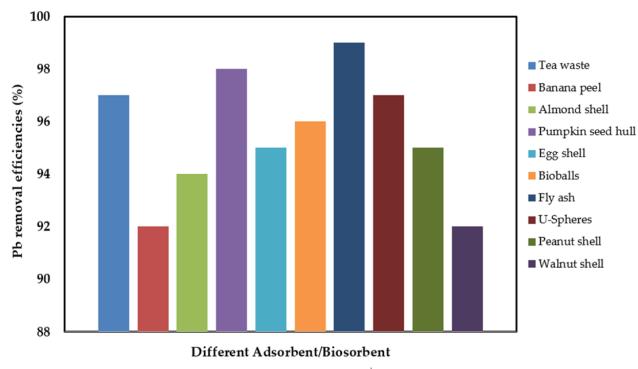
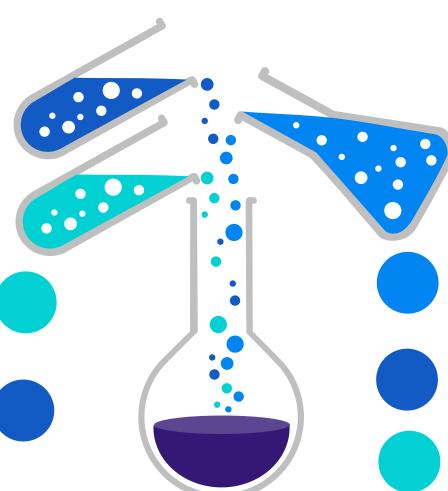


Figure 2. Pre-treatment values for Pb made with different adsorbent/biosorbents

Adsorption/Biosorption Pre-Treatment Studies


Among the many treatment methods, adsorption is an inexpensive, environmentally friendly and efficient removing Pb for ions from process water contaminated with lead ions. The most important detail that draws attention both in the researches in the literature and in the laboratory-scale pretreatment studies we have done is that very high removal efficiencies of Pb ions can be obtained with many different inorganic/organic adsorbent and biosorbent. In this case, as we mentioned in the conclusion section, it is due to some specific properties and the adsorbent/biosorbent structures (surface analysis, pore distributions) used [15, 38-40].

Discussion

Adsorption and biosorption processes are methods that allow the use of different sorbents, and they are especially used in the purification of heavy metals from the aquatic ecosystem. Pb is also successfully removed from receiving water environments by these methods. The interesting point is that the removal of Pb with each sorbent is high com-pared to other metals. It can be said that this depends on some specific factors or situations. We can list them as follows:

Being in the liquid metal group and the free 2 electron distribution can affect the adhesion to the surface of the sorbents in the adsorption mechanism.

The nature of the sorbents, their amphoteric properties, the modification stages explain the bonding and sorption mechanisms with Pb.

Active components in the structures of adsorbents and biosorbents and functional groups of these sorbents can show a strong interaction with Pb.

The amphoteric nature of Pb may increase the removal rate.

Another factor is that some of the physical properties of Pb (high density, molecular weight, etc.) are different from those of other metals.

Our Team

Assoc. Prof. Dr. hakancelebi@aksaray.edu.tr Dr. Lecturer tolgabahadir61@gmail.com

Dr. Lecturer ismailsimsek@aksaray.edu.tr Dr. Lecturer stulun@aksaray.edu.tr

*Correspondence: hakancelebi@aksaray.edu.tr; Tel.: +90-382-288-35-98

THANK YOU

Insert the Subtitle of Your Presentation

The 3rd International Electronic Conference on Applied Sciences 01–15 DECEMBER 2022 | ONLINE

> applied sciences MDPI

Reasons for high adsorption efficiencies on lead removal from aquatic solution

Hakan Çelebi, Tolga Bahadır, İsmail Şimşek, Şevket Tulun

Department of Environmental Engineering, Aksaray University, 68100, Aksaray, Turkey

https://cevre.aksaray.edu.tr/Akademik-Personel?l=en