

Heterogeneous photo-Fenton oxidation of methylene blue solution using Fe(II)-montmorillonite calcinated clay catalyst

Nuno Jorge^{1,2}^{*}; Ana R. Teixeira²; Marco S. Lucas²; José A. Peres²

¹ Escuela Internacional de Doctorado (EIDO), Campus da Auga, Campus Universitário de Ourense, Universidade de Vigo, As Lagoas, 32004, Ourense, Spain ² Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801, Vila Real, Portugal

* njorge@uvigo.es

3rd International Electronic Conference on Applied Sciences

Session L. Student Session

1 – 15 December 2022

Introduction

Contributes to fulfilling the basic living (clothing) requirements of human life;

The wastewater discharged from textile dyeing industry contains a total of 72 toxic chemicals, out of which 30 chemicals cannot be removed by waste treatment processes;

Formation of many types of cancers of different organs such as bladder, spleen, liver and normal aberrations in model organisms and chromosomal deformities in mammalian cells;

Textille dyes are characterized by high color density, high concentration of recalcitrante organics and pH and high turbidity.

Textiles wastewater treatment technology: A review

Dongyang Deng ,^{1,•} ⁽⁵⁾ Mehdi Lamssali ,¹ Niroj Aryal ,² ⁽⁵⁾ Andrea Ofori-Boadu ,¹ Manoj K. Jha ,³ Raymond E. Samuel ⁴

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2017, VOL. 47, NO. 19, 1836–1876 https://doi.org/10.1080/10643389.2017.1393263

Check for update

Biological methods for textile dye removal from wastewater: A review

Deepika Bhatia^a, Neeta Raj Sharma^a, Joginder Singh ^[]^a, and Rameshwar S. Kanwar^{a,b}

^aDepartment of Biotechnology, School of Bioengineering and Biosciences Lovely Professional University, Phagwara, Punjab, India; ^bDepartment of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA

Heliyon Contents lists available at ScienceDirect Heliyon Heliyon Heliyon

Review article

Textile finishing dyes and their impact on aquatic environs

Mohamed Berradi ^{a,**}, Rachid Hsissou ^{a,b,*}, Mohammed Khudhair ^c, Mohammed Assouag ^b, Omar Cherkaoui ^d, Abderrahim El Bachiri ^c, Ahmed El Harfi ^a

Laboratory of Agricultural Resources, Polymers and Process Engineering, Department of Chemistry, Faculty of Science, Ibn Tofail University, B.P. 133-14000, Kenitra,

¹ Pam of Investive Materials and Mechanical Manufacturing Process, ENSAM, University Maulay Ismai, B.P. 15290, Al Mansour, Meines, Merocco Featury of Engineering and Information Technology, Annon University, Annua, Yanov ¹ Adventory ERMTEZ, High School of Testile and Calibrage Industries, Canadancea, Morocco ¹ Payal Noval School, University Dynamics, Ruderard Sara, Add., Casadhonea, Morocco

Textile dye factory

River polluted by textile dyes

Mechanism of the heterogeneous photo-Fenton process

The aim and novelty of this work is:

(1) to develop a new catalyst using a montmorillonite clay as a base material, to degrade a textile dye

Wavelength (nm)

RPM

6

- Agitation at 300 RPM/ 100°C;
- Agitate untill all water is evapoarted

Characterization of Fe-BC catalyst

- The FTIR analysis (Figure 1(a)) showed similar peaks between the Na-Mt and Fe(II)-Mt. However, the Fe(II)-Mt reveled a significant structural change, with the disappearance of a peak at 1103.28 cm⁻¹ and the appearance of a new peak at 528.49 cm⁻¹.
- The XRD patterns of both Na-Mt and catalyst Fe(II)-Mt are shown in Figure 1(b), and the crystallographic parameters were evaluated by measuring the basal reflexions in the plane dhkl 001. The data reveled a significant shift associated with the reflection d001, from 14.01 Å to 9.92 Å, confirming the structural modifications that occurred on the Fe(II)-Mt after the calcination.

Figure 1. Analysis of Na-Mt and Fe(II)-Mt by (a) FTIR and (b) X-ray diffraction.

Results and discussion

Figure 2. Removal of MB by (a) variation of AOPs, (b) variation of pH (3.0 - 7.0), (c) variation of Fe(II)-Mt catalyst concentration (0.25 2.0 g/L) and (d) variation of H2O2 concentration (2.0 - 16.0 mM).

- In Figure 2(a), six different AOPs were tested, with the following conditions: pH = 3.0, [Fe(II)-Mt 0.5M] = 0.5 g/L, [H₂O₂] = 4 mM, [MB] = 0.16 mM, radiation = UV-C (254 nm), time = 25 min;
- heterogeneous Fenton and photo-Fenton were applied, with results showing a MB removal of 78.6 and 88.7%. Clearly, the catalyst can convert the H₂O₂ and generate HO• radicals. This effect is enhanced with the application of UV radiation, thus heterogeneous photo-Fenton was selected as the best AOP;
- The pH was varied from 3.0 to 7.0 (Figure 2(b)). Results showed a MB removal of 88.7, 90.5, 96.1 and 94.2%, respectively for pH 3.0, 4.0, 6.0 and 7.0;
- The results in Figure 2(c) showed a MB removal of 82.6, 96.1, 99.7 and 99.7%, respectively for 0.25, 0.50, 1.0 and 2.0 g/L. As the catalyst concentration increased from 0.25 to 1.0 g/L, the production of HO• radicals increased, due to a higher content of Fe²⁺ present in solution;
- The H_2O_2 concentration was varied from 2.0 to 16.0 mM to access the effect of the oxidant concentration in heterogeneous photo-Fenton (Figure 2(d)). The results showed that the removal of MB was independent from the concentration of H_2O_2 .

Results and discussion

Catalyst reuse

Figure 3. (a) Catalyst stability, (b) Fe²⁺ leaching concentration for 3 consecutive cycles.

- 3 consecutive cycles were performed. The results in Figure 3(a) shows a MB removal of 99.7, 99.5 and 96.3%, respectively for the 1st, 2nd and 3rd cycles;
- The leaching concentration was determined during the 3 cycles (Figure 3(b)). These results showed a high Fe²⁺ release during the first 5 min, decreasing its concentration from 5 to 25 min;
 - The final Fe²⁺ concentration values were observed to be far below the European Eco-nomic Community standards for discharge of treated waters 2 mg L⁻¹.

Based in the results, it is concluded:

(1) that calcination of montmorillonite clays does not affect their structural integrity and allows the incorporation of Fe²⁺

(2) that the heterogeneous photo-Fenton is the most efficient process in MB degradation

(3) that the catalyst can be reused for 3 consecutive cycles, decreasing the treatment costs and the iron is reabsorbed after each cycle

Acknowledgements

The authors are grateful for the financial support of the **Project AgriFood XXI**, operation nº NORTE-01-0145-FEDER-000041, and to the Fundação para a Ciência e a Tecnologia (FCT) for the financial support provided to **CQVR** through UIDB/00616/2020. Ana R. Teixeira also thanks the FCT for the financial support provided through the doctoral scholarship UI/BD/150847/2020.

Thank you for your attention

Visit our web page

https://www.facebook.com/CQVR-Environmental-Chemistry-107443481710327

