

3rd International Electronic Conference on Applied Sciences Part of the International Electronic Conference on Applied Sciences series 1–15 Dec 2022

CO₂ Absorption Using Potassium Carbonate as Solvent

Dimitra Karali*, Konstantina Peloriadi, Nikolaos Margaritis and Panagiotis Grammelis Centre for Research & Technology Hellas, Chemical Process and Energy Resources Institute,57001 Thessaloniki, Greece; *Corresponding author: karali@certh.gr (D.K.)

Development Fund

Co-financed by Greece and the European Union

- 1. Introduction
- 2. Materials and Methods
 - 1. Rate based method
 - 2. Simulation
- 3. Results & Discussion
- 4. Conclusions

- > The combustion of fossil fuels produces a large amounts of CO₂, one of the main greenhouse gases, which impacts global warming.
- Tackling climate change requires reducing CO₂ emissions, either through the use of alternative fuels or through the use of carbon capture technologies.
- One of the well-known CO₂ capture technologies is chemical absorption in an amine-based solvent (mono- ethanolamine (MEA), me-thyldiethanolamine (MDEA) etc.) followed by desorption.
 - Amines are widely used mainly because of their reactivity with CO₂ under mild temperature (absorber: 40-65°C; stripper: 100-120°C) and pressure (1-2bar) conditions.
 - Amines are corrosive and cause equipment problems and through their easy degradation by oxidation reaction can be potentially toxic to the environment.
 - > A major drawback of amines is the high reboiler heat duty for desorption.

In this study,

- > The absorption of CO₂ using K_2CO_3 solution is investigated, as well as its regeneration. ASPEN PLUS® software is used to evaluate the operating parameters of the CO₂ capture pilot unit.
 - K₂CO₃ is less toxic and less corrosive than amines, and is considered a particularly attractive wet chemical absorbents as it has fewer energy requirements for its regeneration.

	Reactions
	$CO_2 + 2H_2O \leftrightarrow H_3O^+ + HCO_3^-$
	$HCO_3^- + H_2O \leftrightarrow H_3O^+ + HCO_3^{-2}$
and	$2H_2O \leftrightarrow H_3O^+ + OH^-$
	$H_2O + H_2S \leftrightarrow HS^- + H_3O^+$
and	$H_2O + HS^- \leftrightarrow S^{-2} + H_3O^+$
	$KOH \rightarrow K^+ + OH^-$

Rate based method

- > The methodology for a rate model is used.
- > The rate of absorption and desorption is determined by two mechanisms,
 - \succ mass transfer and
 - \succ chemical reaction,
- The mass and energy balance equations determine the concentration and temperature along the column.
- The electrolyte NRTL method is chosen for computing liquid phase properties and RK equation of state is chosen for computing vapor phase properties.
- \succ CO₂, H₂S, N₂, O₂, CO and H₂ are selected as Henry-components to which Henry's law is applied, while the activity coefficient basis is aqueous.

>All the data are retrieved from Aspen Plus® databank and chemical equilibrium is assumed.

>In post-combustion capture applications, the absorber is operated close to atmospheric pressure, which is similar to input stream of flue gas.

 \geq When CO₂ is absorbed into K₂CO₃ solvents, particularly at high concentrations of K₂CO₃, both physical reactions and chemical reactions occur.

> The summary of the reactions for the absorber and stripper specifications are shown in the table.

Simulation

The specifications and operating conditions are presented in Table. A schematic flowsheet developed in this study is presented in Figure.

	Absorber	Stripper
Temperature (°C)	35	80, 85, 100
Pressure (bar)	1	0.3, 0.7, 1
Gas flow rate (slpm)		1
Solvent flow rate (slpm)	0.1	
Concentration of K_2CO_3 (%v/v)	15,	20, 25
Concentration of CO_2 (%v/v)		15

- Two main streams were specified, the solvent stream named "SOLVN" and the flue gas stream "FLUEIN".
- > The flue gas was considered to be composed of CO_2 and N_2 while other components like H_2O , O_2 , and SO_2 are neglected.
- A solvent makeup stream was added to the recycled stream before entering the absorber in order to compensate for the solvent loss during the absorption and stripping process.
- The solvent was added at atmospheric pressure and at a temperature of 35°C.
- From the absorber, a gas stream containing almost no carbon dioxide is released.
- Meanwhile, the liquid stream which is rich in solvent leaves the absorber and is pressurized and heated before entering the stripper.
- > From the stripper, a gaseous stream of CO_2 is produced, while the liquid solvent stream is recycled back to the absorber.

and the second				
	Introduction	Materials and Methods	Results & Discussion	Conclusions
- Martin - Martin				

An analysis of variance (ANOVA) was performed with independent parameters:

- stripper temperature;
- ➢ stripper pressure and
- \succ concentration of solvent.
- > The results of the ANOVA analysis are presented in Tables.
- All 27 cases were simulated based on the Aspen Plus flow sheet for two responses:
 - \succ absorption of CO₂ efficiency and
 - \succ regeneration of CO₂ efficiency.
- \succ The CO₂ absorption efficiency for all cases exceeded 99.8%

	Sum of Squares	Mean Square	F Value	P Value
Stripper pressure	1,69017	0,84508	101,3366	7,9357E-12
Stripper temperature	0,31846	0,15923	2,03963	1,55624E-5
Error	0,18347	0,00834		

	Sum of Squares	Mean Square	F Value	P Value
Solvent concentration	2,14728E-6	1,07364E-6	20,07851	7,50939E-6
Error	1,28333E-6	5,34721E-8		

- > The simulation results for CO_2 recovery efficiency are shown in Figure.
- The increase in potassium carbonate solvent has a subtle decrease in absorption of CO₂.
 - > This is inconsistent with the parametric analysis of K_2CO_3 concentration carried out by Ayittey.
 - \succ This differentiation is due to the small variation in CO_2 absorption values.
- → The regeneration CO_2 showed a large variation of values depending on the stripper operating conditions. Figure 2a shows that reducing the pressure of stripper significantly increases CO_2 recovery with a fine linear correlation ($R^2 > 0.785$).
- > Greater regeneration of CO_2 is observed when the stripper temperature is higher, as confirmed in Figure 2b.
- > There is a perfect linear correlation of stripper temperature with regeneration of CO_2 (R²>0.963).
- The concentration of potassium carbonate in the liquid absorber is not expected to affect the regeneration of carbon dioxide (Figure 2c).

- An analysis of variance (ANOVA) was conducted to estimate the influence of parameters on the absorption of carbon dioxide and the CO₂ regeneration.
- Stripper pressure and stripper temperature were chosen as independent variables, as they were suggested to influence CO₂ recovery.
- \succ The results of two-way ANOVA analysis were evaluated for CO₂ recovery as the p-value and F-factor.
- > The statistically significant parameters for the regeneration of CO_2 are the stripper pressure and the temperature of the stripper, with a p value lower to the level of 0.05.
- \succ A one-way ANOVA analysis showed that the concentration of K₂CO₃ is statistically significant for the ab-sorption of carbon dioxide.

- > An eco-friendly carbon dioxide capture process is studied in this research using ASPEN PLUS® software.
- \succ The capture and recovery of CO₂ were simulated in an absorption and a desorption column, using potassium carbonate.
- \succ The parameters examined were the concentration of K₂CO₃ and the temperature and pressure of the stripper.
- Stripper pressure and stripper temperature influence the regeneration of CO₂, as shown in the analysis of variance (ANOVA).

3rd International Electronic Conference on Applied Sciences Part of the International Electronic Conference on Applied Sciences series 1–15 Dec 2022

THANK YOU

Funding: "This research was funded by Operational Program "Competitiveness, Entrepreneur-ship & Innovation" (EPAnEK), grant number T2EΔK-02899/ MIS5134532".

Acknowledgments: We acknowledge support of this work by the project "CoCCUS" (https://co2coccus.gr/en/) which is co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE - INNOVATE (project code:T2EΔK-02899/ MIS5134532)

