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Abstract: The Leaf Area Index (LAI) is an important algorithm for studying the health status of 

vegetation. In this study, the impact of hydrocarbon micro-seepage on vegetation in Ugwueme was 

investigated using the LAI image classification approach. Landsat TM 1996, ETM+ 2006, and OLI 

2016, satellite images that were acquired from the United States Geological Survey (USGS) portal, 

were used to classify various LAI maps as low, moderate, and high classes. The spatial-temporal 

analysis revealed that the low, moderate, and high LAI density classification changed from 41.24 

km2 (50.43%), 33.98 km2 (41.54%), and 6.56 km2 (8.02%) in 1996 to 23.70 km2 (28.98%), 29.48 km2 

(36.04%), and 28.60 km2 (34.97%) in 2006, and to 38.23 km2 (46.74%), 27.54 km2 (33.68%), and 16.01 

km2 (19.58%) in 2016. The stimulation analysis shows that by 2030 (the 14-year planning period), the 

low, moderate, and high LAI density classifications will be 8.86 km2 (10.82%), 24.28 km2 (29.70%), 

and 48.63 km2 (59.46%), respectively. The study shows that LAI is an important algorithm that can 

be effectively used to study the health status of vegetation in an ecosystem. 
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1. Introduction 

Hydrocarbon oil and gas located below the earth’s surface often accumulate in an 

impermeable underground reservoir. These oils and gases leak under high pressure and 

then outflow in a vertical or nearly vertical direction through weak geological structures 

such as faults, joints, and discontinuities to areas of low pressure before emerging on the 

earth's surface as either macro- or micro-seepage [1, 2]. Micro-seepages are invisible traces 

of light hydrocarbons that are detectable only by geochemical means [3, 4]. During the 

vertical migration of oil and gas, oxidation-reduction reactions get established along mi-

gration paths, resulting in anomalies in surrounding sediments, soils, and vegetation [5, 

6]. Vegetation anomalies, mineralogical alterations, and the changes linked to electrical 

and magnetic fields often occur on or near the earth’s surface [7, 8]. Among these anoma-

lies and alterations, Shi et al. [9] reported that bleaching of red beds, enrichment of ferrous 

iron, clay minerals, and carbonate alterations, as well as vegetation anomalies, often ex-

press diagnostic spectral properties that can be studied with remote sensing technology 

[10]. Depending on climate, soil type, vegetation species, and location, micro-seepage has 

been found to have a tremendous impact on vegetation, yielding stress and eventually 

death [11, 12]. 

       Remote sensing (RS) is a fast, cheap, and non-destructive method that is used for 

interpreting anomalous zones [13]. It demonstrates the ability to detect changes in the 

spectral reflectance of vegetation [14]. Figure 1 depicts the spectral reflectance curve of 

Citation: Lastname, F.; Lastname, F.; 

Lastname, F. Title. Eng. Proc. 2022, 4, 

x. https://doi.org/10.3390/xxxxx 

Academic Editor: Firstname Last-

name 

Published: date 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: ©  2022 by the authors. Sub-

mitted for possible open access publica-

tion under the terms and conditions of 

the Creative Commons Attribution (CC 

BY) license (https://creativecom-

mons.org/licenses/by/4.0/). 



2 
 

vegetation. When electromagnetic energy interacts with vegetation, it gets reflected, ab-

sorbed, or transmitted, depending on its chemical constituents or leaf structures [15]. 

When vegetation is stressed, the NIR bands are absorbed by the dead cells rather than 

reflected [16]. In the visible section, absorption is more pronounced at 0.45 µm and 0.66 

µm. The absorptions within the blue and red regions respond strongly to the absorption 

of chlorophyll (chlorophyll-a and chlorophyll-b) bands. Healthy vegetation absorbs elec-

tromagnetic radiation in its visible region (0.4–0.7 µm). Near the 0.7µm, red/infrared 

boundary, absorption decreases and reflection increases. From 0.7 to 1.3 µm, the reflec-

tance is virtually constant before diminishing as the wavelengths get longer [16]. 

        Leaf Area Index (LAI), an important technique in remote sensing [17], It is one 

of the robust vegetation indices that can be used to study the impact of hydrocarbon seep-

age on vegetation. Wang et al. [18] highlight that LAI is a vegetation structural index, 

defined as half the value of the overall green leaf area per its unit ground surface area. 

LAI has a lot of advantages. Some of these include the fact that they are employed in ag-

ricultural and ecological studies for a variety of objectives, such as yield evaluation, stress 

determination, and primary productivity, which are connected to photosynthesis, tran-

spiration, respiration, and the carbon and nutrient cycles [19]. Thus, LAI is a crucial input 

for a variety of agricultural, ecological, climatic, and hydrological models, including mod-

els of canopy photosynthesis, crop growth, transpiration, precipitation, evaporation, and pri-
mary production. An important drawback of LAI is that it cannot be used to quantify stress on each 
plant species since different plants grow together as a community. LAI relates to the Soil Adjusted 
Vegetation Index (SAVI), and their relationship is depicted in equation 1 [19]. Due to the lack of soil, 
the SAVI minimizes the brightness reflection with the Normalized Difference Vegetation Index 
(NDVI). The NDVI is an indicator that explains the visible and near-infrared reflectance of vegetation 
that can be adopted to determine the density of greenness within an area of land [20]. The SAVI is 
calculated with equation 2 [21]. The study aims to stimulate the impact of hydrocarbon micro-
seepage on forest ecosystems in Ugwueme from 1996–2030, based on the use of the Leaf Area 
Index algorithm and Markov chain model. Researchers such as Breda [22], Johckheere et al [23], 
Weiss et al., [24] and Chen [25] had used experimental design, sample techniques, tools, and esti-
mating theories for ground-based LAI measurements to monitor plant health. These methods for 
measuring LAI are often cumbersome and time-consuming. This study had use the time series LAI 
algorithm and Markov chain model for mapping and for stimulation analysis. Mapping and stimu-
lating with RS tools is more rapid and has large coverage, as compared to the ground-based meth-
ods. 

 

LAI = -In [(0.69-SAVI)/0.59]/0.91 (1) 

 

SAVI =
(NIR−Red)

NIR + Red + L
x (1 + 𝐿) (2) 

 
Where NIR is the reflectance in the near infrared band, and red is the Red band [15]. 
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Figure 1. Spectral Reflectance curve for vegetation [15]. 

2. Materials and Methods 

2.1. Materials 

In this study, Landsat 5 TM, 7 ETM+, and 8 OLI for 1996, 2006, and 2016 were used 

to model the LAI change dynamics. These Landsat images were cloud-free and were all 

acquired in the same season (dry season) from the United States Geological Survey portal 

(http://earthexplorer.usgs.gov/). The acquired images have a 30 m spatial resolution and were 

chosen because of their quality and availability. Table 1 describes the characteristics of the 

Landsat datasets, which are sensors selected for the study. 

Table 1. Characteristics of the sensors used in the study. 

Satellite 

Name 
Path/Row 

Sensor 

Type 

Cloud 

Cover (%) 

Year of Ac-

quisition 

UTM 

Zone 

Spatial Resolution 

(Meters) 

Landsat 5 188/055, 188/056 TM 0 1996 32 N 30 × 30 

Landsat 7 188/055, 188/056 ETM+ 0 2006 32 N 30x30 

Landsat 8 188/055, 188/056 OLI 0 2016 32 N 30x30 

2.2. Methods 

2.2.1. Image Pre-processing and Classification 

Pre-processing is very critical in change detection analysis, as inaccuracies ascribed 

to image sensors, if not rectified, might result in erroneous results [26]. Pre-processing 

improves the quality of the image by eliminating radiometric and geometric flaws. In the 

study, image pre-processing, which included image gap-filling, sub-setting, enhance-

ment, and radiometric corrections, was done with the ArcGIS 10.5 and ERDAS Imagine 

10.5 software packages. Zig-zag lines are present in all Landsat 7 ETM+ data acquired 

from the USGS after May 31, 2003. This error was the result of a failure in the ETM+ Scan 

Line Corrector. To rectify this line error in the ETM+ data, which was used for this study, 

radiometric correction was applied with the Landsat toolbox embedded in the ArcGIS 10.5 

software. The World Geodetic System (WGS) 1984 ellipsoid was used to register satellite 

data with the Universal Transverse Mercator (UTM) zone 32N coordinate system. By in-

tegrating multiple satellite spectral bands in the RGB format for all the images used (1996, 

2006, and 2016), the layer stacking tool of the ERDAS Imagine program was used to gen-

erate the Region of Interest (AOI) before overlaying the shape-file of the research area 

(Ugwueme) and then sub-setting. Image classification in remote sensing is classified as 

either supervised or unsupervised [7].In this study, the supervised classification with the 

maximum likelihood classifier (MLC) approach was utilized for the classification process 

http://earthexplorer.usgs.gov/
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because of its ease of training [5]. In this process, clusters of images are defined as a class, 

and a class often occupies a section in the feature space. The training areas are created by 

digitizing each of the LAI classes, generated by band combinations, such as class 1 (low 

LAI), class 2 (moderate LAI), and class 3 (high LAI). The trend K is calculated as the degree 

of LAI class changes between the reference data (T2) and the initial data (T1) [27]. LAI 

classes that are reducing are shown with a negative sign (-), while those increasing are 

represented with a positive sign (+). 

2.3. Stimulation of future LAI dynamics 

2.3.1. Markov Chain Model 

The Markov chain model (MCM) is a conditional model that represents the likelihood 

of a LAI type transiting from one mutually exclusive state (St) to another (St1) during a 

given time period [28]. Future LAI changes are frequently stimulated based on the transi-

tion probabilities of the previous or current LAI changes [29]. MCM often provides esti-

mates of the spatial distribution of LAI changes as well as predictions of their magnitude 

and quantity. As shown in (3) and (4), the conditional probability equation defined by [30–

32] for stimulation analysis is given as: 

  

 

and 

 

 

 

 

 
Where pij is the transition probability matrix, n is the number of LAI types, i and j as 

well as St and St1 are the LAI statuses at time t and t1. 

 

2.3.2. Cellular Automata Model 

A cellular automata (CA) model is a discrete model for simulating complex activities 

in space and time [33]. It is a spatial dynamic system based on a transition rule that links 

the new state to the LAI type’s prior state. CA-based models can also depict non-linear 

and complicated, geographically distributed processes, providing insights into LAI 

change patterns at the local, national, regional, and global levels [34]. Cells, cell size, cell 

neighborhood, transition rules, and time are some of the model’s important components 

that must be taken into account for optimal stimulation results [35]. According to Subedi 

et al. [27] and Singh et al. [28], the CA model is expressed as follows in (5): 

 
Where S is the set of states of the finite cells, N is the number of neighboring cells, t 

and t+1 are different times, and f is the transformation rule of local space. 

2.3.3. CA-Markov Model 

The CA-Markov model is a model that combines the theories of Markov and CA for 

future spatial-temporal analysis [36, 22]. In remote sensing, the integrated CA-Markov 

model has advantages due to its simple calibration, effective efficiency with data, and ca-

pacity for complex patterns [37, 38]. The CA-Markov model was applicable in this study 

for stimulation analysis. 

3. Results and Interpretation 

3.1. Classification analysis and rate of changes 

(3) 

(4) 

(5) 
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1996 

Table 2 shows the LAI classification and rate of change analysis. From the spatial-

temporal analysis, we see that the category of moderate LAI classes decreased from 

33.9750 km2 (41.54%) in 1996 to 29.4777 km2 (36.04%) in 2006 and to 27.5436 km2 (33.68%) 

in 2016. Throughout the study, the low and high LAI classes decreased and increased, 

from 41.2443 km2 (50.43%) and 6.5610 km2 (8.02%) in 1996, to 23.7006 km2 (28.98%) and 

28.6020 km2 (34.97%) in 2006, and to 38.2266 km2 (46.74%) and 16.0101 km2 (19.58%) in 

2016. Between 1996 and 2006, the low and moderate LAI classes experienced negative 

changes of –17.5437 km2 (–21.45%) and –4.4973 km2 (–5.5%), while the high LAI class ex-

perienced positive changes of 22.041 km2 (26.95%). From 2006–2016, the low LAI class ac-

counted for a positive change of 14.526 km2 (17.76%), while the moderate and high LAI 

classes recorded negative changes of –1.9341 km2 (–2.36%) and –12.5919 km2 (–15.39%), 

respectively. The spatial-temporal analysis shows that vegetation changes are occurring 

in the study area. These changes are depicted with differences in the LAI classification 

maps and are the result of vegetation degradation due to the various degrees of impact 

and spread of the hydrocarbon seepage over the study years. The spread of hydrocarbon 

seepage in the year 2016 was higher than in 2006 and 1996; hence, the vegetation was more 

degraded in 2016 than in other study years. The higher the value of the vegetation index, 

the higher the likelihood that a substantial amount of green vegetation will cover the area. 

Lower LAI values indicate reduced or degraded vegetation. 

Table 2. The LAI density classification. 

LAI den-

sity clas-

ses 

1996 LAI clas-

ses 

2006 LAI clas-

ses 

2016 LAI clas-

ses 

Trend (1996-

2006) 

Trend (2006-

2016) 

Area 

(km2) 
(%) 

Area 

(km2) 
(%) 

Area 

(km2) 
(%) 

Area 

(km2) 

Area 

(%) 

Area 

(km2) 

Area 

(%) 

Low 41.2443 50.43 23.7006 28.98 38.2266 46.74 -17.5437 -21.45 14.5260 17.76 

Moderate 33.9750 41.54 29.4777 36.04 27.5436 33.68 -4.4973 -5.5 -1.9341 -2.36 

High 6.5610 8.02 28.6020 34.97 16.0101 19.58 22.0410 26.95 -12. 5919 -15.39 

 

 

 
 

(a) (b) 
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(c) 

Figure 2. LAI classification maps for 1996, 2006, and 2016. 

3.2. The spectral reflectance of vegetation 

Figure 3 depicts the differences in the spectral reflectance of solar energy between 

healthy and un-healthy (stressed) vegetation and within the visible and infrared sections 

of the electromagnetic spectrum. Here, the reflectance values of vegetation are plotted 

against the wavelength to show the degree of reflectance in the spectrum. Within the vis-

ible section of the spectrum, we see in Figure 3 that, from 1996–2016, healthy vegetation 

reflected more solar radiation than un-healthy (stressed) vegetation. However, the spec-

tral reflectance curve of unhealthy (stressed) vegetation is affected owing to the decrease 

in efficiency of photosynthetic pigments, thereby yielding an increase in the reflectance 

values within the visible section and a decrease in reflectance within the NIR section [39].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Spectral reflectance of healthy and unhealthy (stressed) vegetation within the visible and infrared 

electromagnetic spectrums (1996–2016). 

4.2. The Stimulation analysis 

Stimulation tools implemented in the IDRISI software are frequently used for predic-

tion analysis (Eastman 2009a, b). In this study, the stimulated year (2030) was anticipated 

using the transition area matrix and transition probability matrix. The transition probabil-

ity matrix depicts the probability that a given LAI class will transit into another LAI class. 

The transition area matrix depicts the total area displayed in cells or pixels (30 m x 30 m), 

generated by multiplying each column in the transition probability matrix with cells of 
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the LAI in the preceding image. Table 3 is a matrix table that shows the stimulation anal-

ysis (2016–2030). Considering Table 3, we see that the rows show older LAI class catego-

ries while the column depicts newer class categories. Conditional probability maps, gen-

erated with the Markov–chain model, indicate the likelihood of a given cell (pixel) being 

located in a specific class in the future. Figures 4(a)-(c) show how they are used to graph-

ically represent the transition probability matrix. The final stimulated LAI maps are de-

picted in Figure 5. 

Table 3. (a) Transition area matrix (b) Cells that are expected to transition. 

(a) Transition probability matrix (b) 
Cells that are expected to transi-

tion 

LAI catego-

ries 

Probability of changing to 
Cells in 

Expected to transition to: 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Class 1 0.2329 0.3413 0.4258 Class 1 6133 8987 11214 

Class 2 0.0643 0.2826 0.6531 Class 2 2106 9256 21391 

Class 3 0.0502 0.2752 0.6746 Class 3 1595 8745 21440 

 

Table 3. (a) displays the transition probability matrix table. The spatial-temporal analysis shows 

that the likelihood of LAI class 1 changing to itself is 0.2329, shifting to LAI class 2 is 0.3413, and 

shifting to LAI class 3 is 0.4258. The probability of LAI class 2 shifting to LAI class 1 is 0.0643, for 

itself it is 0.2826, and for LAI class 3 it is 0.6531. The likelihood of LAI class 3 changing to LAI class 

1 is 0.0502, to class 2 is 0.2752, and to itself is 0.6746. Table 3 (b) depicts the cells that are expected to 

transition to different LAI classes. Table 4 summarizes the final spatial–temporal stimulation for 

2030. If we compare the analysis in Table 2 with that in Table 3, we see that in the stimulated year 

(2030), the health status of vegetation has rapidly declined. As vegetation becomes stressed and 

diminishes, it therefore implies that by 2030, more carbon will be released into the atmosphere, 

hence increasing climate change. 

Table 4. The spatial–temporal stimulation for 2030 . 

LAI  

Categories 

(a) 2030 (14 years planning period) (b) Trend (2016–2030) 

Area (km2) Area (%) Area (km2) Area (%) 

Low 8.8668 10.842 –29.3598 –35.90 

Moderate 24.2883 29.699 –3.2553 –3.98 

High 48.6252 59.458 32.6151 39.88 

Total 81.7803 100   
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4. Conclusion  

The study shows that remote sensing is an important technique for modeling and 

stimulating hydrocarbon micro-seepage in anomalous zones. A useful algorithm in re-

mote sensing, known as the Leaf Area Index (LAI), has been adopted as a factor for stud-

ying the health status of vegetation. Due to the varied spatial–temporal resolutions of 

space satellite data, remote sensing techniques have the potential to quantify LAI fluctu-

ations at a diverse spatial–temporal scale. The study investigates and promotes the impact 

of hydrocarbon micro-seepage on vegetation ecosystems in Ugwueme, Nigeria's south-

ern-eastern region. To achieve this aim, three cloud-free Landsat images, from Landsat 

TM 1996, ETM+2006, and Landsat 8 OLI 2016, were acquired from the United States Geo-

logical Survey (USGS) portal (http://earthexplorer.usgs.gov/) for the creation of low, mod-

erate, and high LAI classification maps. The results of the study show that remote sensing 

technology can be effectively used to delineate areas of vegetation anomalies and altera-

tions. 

 
 
 

(a) LOW (b) MODERATE 

(c) HIGH 

Figure 4(a)-(c). Markovian Conditional        

Probability maps 

2030 

   Figure 5. Stimulated LAI maps (2030) 
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