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Synthesis and use of Unsymmetrical Sulfonamides Enantioselective C-Protonation of the Lithium Enolate of 2-Methyl Tetralone

Enantioselective protonation[1] of enol(ate)s allows conversion 

of a racemic carbonyl compound into one of its single 

enantiomers in 100% yield, whereas ‘traditional resolutions’ 

can only offer a maximum conversion of 50%.

Enantioselective protonation of enol(ate)s have the potential to be an 

industrially applicable method for the synthesis of stereochemically

pure α-substituted carbonyl derivatives such as fragrances, 

pheromones and biologically active anti-inflammatory agents.

Deprotonation of a racemic ketone can lead to a stereochemically defined 

enolate.  Re-protonation of this enolate on each face with an enantiomerically 

pure acid, HA*, leads to either the (S)- or (R)-enantiomer of the parent ketone.  

This is an indirect resolution as it involves formation of an intermediate enolate.   

We aimed to expand this methodology by designing a single 

proton mediator which will allow individual access to both 

single enantiomers in 100% yield by use of subtle 

adjustments to the reaction conditions.  

We chose to use 2-methyl tetralone as our standard ketone due to its known reliable 

enolate chemistry, predictable enolate configuration and u.v. activity.  For efficient C-

protonation of the lithium enolate of 2-methyl tetralone this corresponding enolate needs 

to be ‘base-free’.   If a competitive base is present, such as diisopropylamine[5] (derived 

from LDA), proton transfer occurs by an unwanted combination of C- and O-protonation.   

This unwanted O-protonation mechanism can easily be seen from attempted 

deuteriation of the lithium enolate-diisopropylamine complex with acetic acid-d4 which 

gave no deuterium incorporation. This can presumably be accounted for by use of 

Seebach’s internal proton return,[5] whereby the proton abstracted by LDA is the one 

returned to the enolate.   This concept is particularly important as addition of a ‘chiral

proton donor’ may generate a racemic ketone by internal proton return from the achiral

diisopropylamine. 

To prevent this internal proton return, we chose to use enol equivalents, such 

as silyl enol ethers and enol acetates.  These have previously been shown in 

the 1960’s to liberate the required ‘base-free’ lithium enolate by simple 

addition of MeLi.[6]

We propose these enantioselective C-protonations occur via two complementary routes.

For internal protonation, the symmetrical 

sulfonamide acts as a chiral proton donor 

delivering the proton to one face of the 

lithium enolate to give (predominantly) one 

enantiomer.

Whereas, for external protonation the 

dilithiated sulfonamide now acts as a chiral 

scaffold.  This presumably assists proton 

delivery on the LESS hindered face of the 

lithium enolate to give other the 

complementary enantiomer. 

Conclusion
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We chose the cyclohexyl-1,2-diamine as our chiral 

scaffold for our proton sources due to its rigid 

conformation.  The acidity of the NH’s were 

increased by formation of the corresponding 

sulfonamides.

Using our standard reaction conditions, we have elegantly 

shown that substituted sulfonamides can be used to gain 

access to both enantiomers of 2-methyl tetralone by use of 

our complementary internal and external proton strategy.

We have extended this strategy by synthesising related unsymmetrical sulfonamides 

and amides by addition of the corresponding substituted sulfonyl chloride/acid 

chloride to the tosyl ammonium salt.  These proton sources/mediators were screened 

against our standard lithium enolate derived from the corresponding enol acetate and 

MeLi (2 equivalents).
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2-naphthyl 9% (S)-43

2 4-nitrobenzyl 43% (R)-17

3 n-butyl 53% (R)-21

4 4-t-butylbenzyl 40% (R)-17

6 acyl 15% (S)-60

7 propyl 31% (S)-12
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9 pivoyl 41% (S)-48
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We have successfully shown the use of two complementary protonation strategies 

(internal versus external protonation) as a synthetic method for the synthesis of both 

(enriched) enantiomers of 2-methyl tetralone using a SINGLE chiral scaffold. 
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damascone 
[2]

Musk odorant Profens

Naproxin
[3]

"Warm, sensual, animal, natural, long 
lasting and tenaciuos"
-C.Fehr in Chem.Eur.J. 2002, 8, 855

Nonsteroidal antiinflammatory
-A.E.Greene, C.L.Drain and P.Crabbe,
J.Am.Chem.Soc., 1980, 102, 7583
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Internal protonation gave (R)-64% e.e. (57%)

External protonation gave (S)-45 % e.e. (54%)
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