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Abstract: The bluntleaf dock/ broad-leaved dock (Rumex obtusifolius) is a fast growing, highly com-

petitive and resistant weed. It is endemic to Austria and generally a very common weed in Europe. 

Rumex obtusifolius prefers nutrient-rich, moist soils. As a light germinator, it spreads easily in patchy 

plant stands. Its taproot can penetrate compacted, waterlogged and oxygen-poor soil layers to a 

depth of 2.60 m. It is considered a pest in agriculture, both in field and pasture, because of its rapid 

growth, ability to vegetatively propagate from leftover roots and its extensive taproot system. The 

most important management strategy is to prevent dock plants from establishing. If plants are al-

ready present in the field, the population must be assessed. If there are up to two dock plants per 

square meter, single-stock measures such as pricking out or tilling and reseeding are used. If there 

are more than two plants per square meter, uprooting will help. Furthermore, it will become neces-

sary to adjust the crop rotation. The application of pesticides is possible; however, mechanical re-

moval is preferred. The goal of this study is to develop a CNN (convolutional neural network) that 

is specially trained to identify dock plants and to capture location and position in the field/pasture. 

RGB photographs (n = 2500) were collected using an unmanned aerial vehicle and handheld cam-

eras from March to August 2021. The obtained dataset contained photographs showcasing dock 

plants in all sizes and forms to include different phenotypes and age difference. The network was 

also trained to differentiate between whole plants and plant parts such as leaves. 

Keywords: AI; neural network; weed species detection; deep learning; RGB; grassland; Rumex, 

weeding; plant detection  

 

1. Introduction 

The bluntleaf dock/broad-leaved dock (Rumex obtusifolius) is an easily established, 

highly persistent perennial, endemic to Austria and commonly encountered all over Eu-

rope. Its taproot can penetrate compacted, waterlogged and oxygen-poor soil layers to a 

depth of 2.60 m. It is considered a pest in agriculture, both in field and pasture, because 

of its rapid growth, ability to vegetatively propagate from leftover roots and its extensive 

taproot system. The most important management strategy is to prevent dock plants from 

establishing. Cultural controls include removal of existing plants to prevent seeding, 

proper crop rotation and land management to reduce (re-)establishment [1]. With the 

need to reduce pesticide usage and to farm sustainably, non-chemical control mechanisms 

become more prominent. However, there is no single cultural method that controls R. ob-

tusifolius effectively [1,2]. 
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The objective of this study was to train a convolutional neural network (CNN) to 

achieve a high recognition rate of R. obtusifolius plants at different developmental stages 

and their position in a conventional pasture using a conventional RGB camera. This tech-

nology should aid the targeted control of R. obtusifolius through non-chemical methods.  

2. Methods 

2.1. Study Site and Data Acquisition 

The study was conducted in spring of 2021 in Upper Austria. Images of wild growing 

R. obtusifolius plants in local pastures were obtained and a custom-made dataset for the 

identification of R. obtusifolius was created. You Only Look Once (YOLO), a free of charge 

object detection and localization network, was used to create the CNN [3]. To increase 

robustness of the convolutional neuronal network (CNN) images and videos were taken 

with different devices (UAV, cell phone cameras) and from different angles and develop-

mental stages. The shooting height of the UAV (DJI Phantom) camera was from 8 to 15 m 

from the ground. A total of 2500 images containing R. obtusifolius plants were acquired, 

including 500 cell phone images, and 2000 UAV images. These images were processed 

and made available to a learning algorithm. The resulting data source and the associated 

weights were provided to a recognition system.  

2.2. Data Pre-Processing an Annotation 

The images obtained were processed for further evaluation. Briefly, the images and 

videos were divided into classes to make the subsequent annotation process easier and 

faster. By pre-selecting classes, the downstream process improved because of elimination 

of the need to switch between classifications. 

Post pre-selection, the manual labeling of the individual images was conducted. Here 

DarkLabel (2022 GitHub, Inc.) was used and the output was saved into an XML file using 

the VOC format. Bounding boxes were drawn around the plant or individual leaves and 

labelled. For each of the labeled images, an additional text file was also generated that 

contained the annotated bounding boxes’ coordinates. Examples can be seen in Figures 1 

and 2.  

 

Figure 1. Annotation sample one. Black boxes are annotated R. obtusifolius plants. 
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Figure 2. Annotation sample two. Black boxes are annotated R. obtusifolius leaves. 

2.3. Deep Learning Approach and Model Training 

After annotation and labelling was completed, training of the CNN started using 

YOLO. Since the images alone do not form a usable neural network that can be applied, 

the images must be sorted into classes. This step is important to inform the training which 

leaves belong to which plant in the image. The classification cannot be generalized be-

cause each application has its own needs and priorities. The actual learning process took 

several hours. It is important that the "loss" function shows a trend towards zero.  

Figure 3 shows the hardware and software architecture. We used Linux as the basic 

system for the training. In addition, we used two GPUs from NVIDIA for training. Figure 

4 displays the architecture from the basic training system YOLOV4. 

 

Figure 3. System architecture 

 

Figure 4. Training architecture (https://iq.opengenus.org/yolov4-model-architecture/) 

Figure 5 displays the learning rate and the process. With each iteration, weights are 

created, which make it possible to continue calculating with these values in further train-

ings. Additionally, with those weights, the use of additional GPUs becomes possible. 

Ubuntu 20.04

CPU Intel Xeon 3.5 GHz 24 cores

RAM 125 GB

GPU 2x NVIDIA Quadro RTX 6000
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The yellow line shows the accuracy, and the gray line shows the learning rate. The 

screen displays a view step showing the iterations over the learning process. 

 

Figure 5. Model training process 

3. Results 

3.1. Data Acquisition 

After the training was completed, the verification process was conducted. Therefore 

about 10 videos and 200 images were generated. The videos were converted into single 

images. In total, about 2500 images were available for the training. 

3.2. Model Training 

Results of the first training and subsequent test in the laboratory showed that the first 

training worked successfully with only a few images.  

In the second training, the amount of data was multiplied to ensure better recognition 

of the plant. After the second training phase was finished, the next run of tests was con-

ducted. The test images showed almost perfect results. A test run was started with a video 

created by a drone. The video with the plants was loaded into the system for testing, and 

it turned out that the result of the recognition was quite good, but the individual images 

worked better. 

3.3. First Test after the First Training 

After the training and the creation of the weights, the testing phase began. For the 

first tests, existing recordings as well as new recordings were used. The results after the 

first training were very promising. Figure 4a,b show the results. The figures are different 

in perspective and area. 
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(a)  (b)  

Figure 4. (a) Result One after Training One; pink (plant) (germ.); ampfer = broad-leaved dock; (b) 

Result Two, Test One after Training One; pink(plant) (germ.); ampfer = broad-leaved dock. 

3.4. First Test after the Second Training 

For the second run, additional images and videos were recorded and processed (n = 

1500 images). The new and old images were re-evaluated. In addition, new classes were 

defined to allow a better detailing of the information. Due to the adjusted conditions, the 

training was repeated, after which another test series was started. Figure 5a,b show the 

results. In Figure 5d, both individual leaves and whole plants were recognized. 

  
(a) (b)  

Figure 5. (a) Result One after Training Two; pink (plant); yellow (leaf) (germ.); ampfer = broad 

leaved dock (germ.); blatt = leaf; (b) Result Two after Training Two; pink (plant); yellow (leaf) 

(germ.); ampfer = broad-leaved dock (germ.); blatt = leaf. 

3.5. First Test after the Second Training 

Training was conducted in two sections. In step one, whole plant recognition was 

trained. In step two, whole plant and leaf recognition was trained. Plant and leaf detection 

are shown in Table 1. 

Table 1. Learning and testing details. 

Test Iteration Plant Detection % Leaf Detection % No. of Training No. of CNN Layer 

1 45 0 1 162 

2 40 0 1 162 

3 78 75 2 162 

4 82 79 2 162 
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4. Conclusions 

The results after two trainings are very promising. Due to the decision to create our 

own dataset, further training is necessary to achieve perfect detection.  

We created our personal data source with a set of images. For the first training, we 

used a series of images for testing. For the second training, we used additional new mate-

rial as well as existing material. After the second training was completed, tests were car-

ried out again. Problems arose in one test scenario, the close-up images created by a drone. 

The problem was that the turbulence coming from the rotor blades changed the direction 

of the leaf of the plant. The plant leaf was twisted by the wind and therefore could no 

longer be identified. For future CNN training, care must be taken that leaves are recorded 

under various environmental conditions (e.g., windy days) to reflect natural conditions 

on a given day in a pasture. Further, the drone has to fly higher so there is less turbulence. 

For later studies, the goal is for a drone to fly autonomously over a given area and send 

its position to a monitoring system and to extend the CNN to multiple problematic weeds 

such as datura (Datura stramonium). 

Table 2(c) shows a short overview of the learning rate, which was about 75% of the 

training. Table 2(a) and 2(b) display a short confusion matrix from the whole Rumex plant 

and the Rumex leaf. 

Table 2. (a) Shows a confusion matrix about the Rumex plant; (b) shows a confusion matrix about 

the Rumex leaf; (c) displays a validation measures table after 75 percent. 

(a) 

n = 444  Predicted Values 

Rumex plant True Positives 346 False Positives 98 

(b) 

n = 555  Predicted Values 

Rumex leaf True Positives 460 False Positives 95 

(c) 

 75% Training 

Accuracy 65.25% 

Precision 82.00% 

Recall 70.50% 

F1-score 75.50% 
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