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Abstract: Lanthanide compound doped CH3NH3PbI3 (MAPbI3) perovskite solar cells have been fab- 12 

ricated and characterized. The purpose of this research is to investigate additive effect of forma- 13 

midinium iodine (FAI) and lanthanide compound into the MAPbI3 perovskite layer for improving 14 

the photovoltaic performance and the stability of conversion efficiency. Incorporation of FAI and 15 

europium chloride into the perovskite crystals maintained the stability of conversion efficiency for 16 

30 days. The photovoltaic performance was based on the narrow band dispersion with decrease of 17 

effective mass related to the carrier mobility. The carrier mobility depends on the degree of charge 18 

transfer between 3d orbital of europium atom, 5p orbital of iodine atom and 6p orbital of lead atom 19 

in the perovskite crystal. Addition of samarium or terbium compound into the crystal reduced the 20 

photovoltaic performance due to the flat band dispersion of d orbital of samarium atom or 4f orbital 21 

of terbium atom near valence band state. The lanthanide-doped perovskite crystal controlled the 22 

photovoltaic characteristics based on the electronic structure. The europium-doped perovskite crys- 23 

tal have advantage to apply for the industrial photovoltaic devices with stability.   24 

Keywords: perovskite solar cells; lanthanide compound; photovoltaic properties; morphology; X- 25 

ray diffraction; first-principles calculation 26 

 27 

1. Introduction 28 

The perovskite solar cells have great performances of photovoltaic properties, as 29 

compared with characteristics of silicon and gallium arsenide solar cells [1, 2]. The perov- 30 

skite solar cell have these issues concerning the photovoltaic performance related to sta- 31 

bility. The perovskite solar cells were composed of the perovskite layer as active layer, 32 

electron and hole-transporting layer. Material design of the perovskite crystal is im- 33 

portant to develop the photovoltaic device with stability of the photovoltaic performance. 34 

For example, the CH3NH3PbX3 (MAPbX3) perovskite crystal with substitution of alkali 35 

metal ions such as sodium, potassium, rubidium and cesium [3-8], organic cation [9,10] 36 

such as formamidinium (FA), guanidinium (GA), ethylammonium (EA) [11] as A-site, tin 37 

[12], transition metal [13-16], lanthanides using europium (Eu) [17, 18], samarium (Sm), 38 

and terbium (Tb) ion as B-site and halogen ions as X-site have been characterized [19-23].  39 

Recently, partial substitution of lead (Pb)-site by lanthanide ion such as Eu3+, cerium 40 

(Ce3+), or neodymium ions passivated the interface morphology while suppressing the 41 

decomposition by Eu2+/Eu3+ redox reaction [24-26]. The photovoltaic properties depended 42 
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on interface, internal morphology, the band structure near valence and conduction band 43 

states, thermodynamics and kinetic behavior. The band dispersion and effective mass has 44 

been studied for expecting the carrier diffusion and mobility related to short-circuit cur- 45 

rent density, and conversion efficiency. The lanthanide compounds with luminescence 46 

characteristics have been applied as up/down conversion materials for solar cells [27, 28].  47 

Our purpose is to fabricate and characterize the lanthanide compounds-doped 48 

MAPbX3 perovskite solar cells for improving the photovoltaic performance and conver- 49 

sion efficiency. Especially the photovoltaic characteristics of the perovskite solar cell 50 

added with europium hydride compounds, samarium or terbium acetylacetonate hydrate 51 

was investigated. The photovoltaic properties were analyzed by the J-V characteristics, 52 

morphology and electronic structure.   53 

2. Materials and Methods 54 

The lanthanide compound-doped MAPbI3 perovskite solar cells using decaphenyl- 55 

cyclopentasilane (DPPS) were fabricated and characterized [29, 30]. The photovoltaic cells 56 

were fabricated as FTO/TiO2/perovskite/DPPS/Spiro-OMeTAD/Au. The J–V characteris- 57 

tics (Keysight B2901A, Keysight Technologies, Santa Rosa, CA, USA) were measured un- 58 

der illumination at 100 mW cm−2 by using an AM 1.5 solar simulator (San-ei Electric XES- 59 

301S, Osaka, Japan). The solar cells were illuminated through the side of the FTO sub- 60 

strates and the measurement area was 0.080 cm2. The photovoltaic parameters, open cir- 61 

cuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), series resistance (Rs), 62 

shunt resistance (Rsh) and conversion efficiency (η) were measured. The external quantum 63 

efficiency (EQE, QE-R, Enli Technology Co. Ltd., Kaohsiung, Taiwan) was measured.  64 

The Eu3+, Sm2+, Sm2+ or Tb3+-doped FAPbI3 and FAPbI3 perovskite crystal were formed 65 

as a cubic crystal using experimental lattice constants (FAPbI3: a = 6.3621 Å ) measured by 66 

X-ray diffraction data [31-33]. The FAPbI3 perovskite crystals (cubic Pm3m) were con- 67 

structed with supercells (2×2×2). The mole ratio of the Eu3+, Eu2+, Sm2+ or Tb3+ ions to Pb2+ 68 

cation ion was adjusted to be 1:8 as 12.5 %. The ab initio quantum calculations were per- 69 

formed using the Vanderbilt ultrasoft pseudo-potentials, scalar relativistic generalized 70 

gradient approximations and Perdew-Burke-Ernzerhof (GGA-PBE) exchange-correlation 71 

functional and density functional theory (DFT+U, U = 6.0 eV) (Quantum Espresso, v.5.2.1, 72 

Quantum Espresso Foundation, UK). Plane-wave basis set cut offs for the wave functions 73 

and charge density were used to be 30 and 320 Rydberg (Ry). Uniform k-point grid (4×4×4) 74 

or (8×8×8) in the Brillouin zone was used.  75 

The Eu2+ or Sm2+-doped FAPbI3 perovskite crystal was fixed to be neutral state in the 76 

unit cell. The Tb3+-doped FAPbI3 perovskite crystal was fixed to be +1 charge state in the 77 

unit cell. The band structures were analyzed for the Brillouin zone along the direction of 78 

wave vector. Path for the Eu2+, Sm2+ or Tb3+- doped FAPbI3 perovskite crystals were set as 79 

follows, Г (0, 0, 0)→X (0, ½ , 0)→M (1/2, 1/2, 0)→Г→R (1/2, 1/2, 1/2)→X, M→R. Pb cation 80 

was set at the position of Γ (0, 0, 0). The energy levels were standardized with Fermi en- 81 

ergy at zero. The partial density of state (PDOS) near valence (VB) and conduction (CB) 82 

band states were calculated.  83 

 84 

3. Results and Discussion 85 

The J-V characteristics and EQE of the perovskite solar cell doped with FAI and lan- 86 

thanide compounds were investigated. The photovoltaic parameters of JSC, FF, Rs, Rsh and 87 

EQE of the perovskite solar cell added with 10% FAI and 2% EuCl2 were improved, yield- 88 

ing the best value of η to be 9.94%. In the cases of 20% FAI and 2 % EuCl2 or 20% FAI, the 89 

J-V curves exhibited the hysteresis behavior during the scanning direction. This behavior 90 

was due to no-uniformity of carrier diffusion through the grains boundaries in the uneven 91 

layer. The stability of η maintained to be about 8% over 28 days. 92 
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In addition of 10% FAI and 1% or 2% EuBr2, the photovoltaic performances of JSC, FF, 93 

Rsh and EQE were reduced, yielding η of 4.85% and 4.67%. Addition of FAI and EuBr2 94 

reduced the stability of η during 30 days. The Br anions were distributed at grain bound- 95 

aries, and was not efficiently inserted into defects in the perovskite crystal owing to diffi- 96 

culty in Br anion diffusion in the perovskite layer. In the standard case using 20% FAI, the 97 

photovoltaic parameters of JSC, Voc, Rs, Rsh and EQE were improved, yielding η of 8.13%. 98 

The stability was gradually reduced.  99 

In the additive case of 20% FAI, 2% Tb(acac)3 or Sm(acac)3 under the annealing treat- 100 

ment, the photovoltaic performance of JSC, Voc, FF, Rsh and EQE were improved, yielding 101 

increase of η to be 7.93% and 4.79% for Tb(acac)3 and Sm(acac)3 system. The strengths of 102 

EQE significantly increased in the range of 400-800 nm. The annealing treatment opti- 103 

mized with tuning the internal structure while promoting the crystal generation and 104 

growth. The electric current was efficiently converted from the photon, increasing JSC and 105 

EQE. However, the stabilities of η were drastically reduced to be less than 1% in 1 week. 106 

The acetylacetonate hydrate with steric hindrance did not diffuse and introduce into lig- 107 

ands, yielding no-passivation.  108 

The photovoltaic properties of JSC, Rs and η of the Eu3+, Sm2+ or Tb3+-doped perovskite 109 

crystals were analyzed by the electronic structures [30]. The electron density distribution, 110 

band structures, and PDOS of Eu2+, Sm2+ or Tb3+-doped FAPbI3 crystals were discussed. 111 

As shown in Fig. 1 (a), incorporation of Eu2+ ion into the perovskite crystal caused the 112 

narrow band dispersion along Γ direction with effective mass ratio of electron and hole to 113 

free electron (me*/m0 = 0.03 and mh*/m0 = 0.01) near CB and VB states. This behavior expects 114 

increase of the carrier mobility related to Jsc. The calculated band gap (Eg = 1.53 eV) was 115 

closed to the experimental results (Eg = 1.50 eV) by EQE. The PDOS showed narrow dis- 116 

persion of 3d orbital, the separated 4f orbital of Eu atom, 5p orbital of I atom near VB state, 117 

and 6p orbital of Pb atom and d orbital of Eu atom near CB state. The charge transfer 118 

between 3d-5p orbital in Eu and I atom, 3d-6p orbital in Eu and Pb atom caused the carrier 119 

generation and diffusion, yielding increase of Jsc.  120 

The electron density distribution, band structures, PDOS of Sm2+-doped FAPbI3 crys- 121 

tal were calculated. As shown in Fig. 1 (b), the 3d and 5d orbital of Sm ion were localized 122 

near VB and CB states. The theoretical band gap (Eg = 0.4 eV) was fairly narrowed, as 123 

compared with the experimental band gap (Eg = 1.57 eV) by EQE. The narrow band gap 124 

of d orbital of Sm ion was derived from the slight distortion between the Sm-I bonds as 125 

Jahn-Teller effect. The flat band distribution near VB state indicates the suppression of the 126 

hole-diffusion, expecting decrease of JSC.  127 

The electron density distribution, band structures, and PDOS of Tb3+-doped FAPbI3 128 

crystal were calculated. As shown in Fig. 1 (c), the 4f orbital of Tb atom was localized near 129 

VB state. The d orbital of Tb atom and 6p orbital of Pb atom stated near CB state. The 4f 130 

orbital of Tb atom was localized, and 5p orbital of I atom stated near VB state. The calcu- 131 

lated direct band gap of 1.49 eV was closed to the experimental band gap (Eg = 1.59 eV) 132 

converted by EQE. The flat band dispersion consisting with the localized 4f orbital of Tb 133 

atom near VB state expects as inhibiting the hole-diffusion, decreasing JSC related to η.  134 

The photovoltaic behavior were analyzed on the basis of the electron structures. Es- 135 

pecially, partial replacement of Eu2+ ion with B-site of Pb atom caused the narrow band 136 

dispersion with decrease of the effective mass, promoting the carrier diffusion related to 137 

Jsc. The Eu2+ cation and Cl- anion were distributed at grain boundaries, and were efficiently 138 

inserted into defects on lead or halogen site in the crystal as passivation effect. The Eu- 139 

doped perovskite crystal was nucleated and reformed by the Eu2+ / Eu+3 redox reaction.  140 

 141 

  142 

 143 
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 144 

 145 

 146 

Fig. 1. Electronic density distribution, band structures, partial and total density of states (PDOS) of 147 

(a) Eu2+-, (b) Sm2+- and (c) Tb3+-doped FAPbI3 perovskite crystals.       148 

Incorporation of Sm2+ or Tb3+ ion into the crystal reduced the performance as the de- 149 

composition owing to no-redox reaction. The photovoltaic performance was based on the 150 

flat band dispersion of the localized 4f orbital of Sm2+ ion and d orbital of Tb3+ ion near VB 151 

state. The acetylacetonate hydrate anion were not inserted into defects at halogen site in 152 

the crystal, suggesting a loss of passivation effect. The organic anions with steric hin- 153 

drance were difficult to diffuse and located as ligands in the crystal. The Sm2+- or Tb3+- 154 

doped perovskite crystal were gradually decomposed by desorption of MA and I ions. 155 

The Eu-doped perovskite crystal have advantage to apply for the industrial photovoltaic 156 

devices with long-term stability of conversion efficiency. The lanthanide-doped perov- 157 

skite crystal had the photovoltaic characteristics based on the electronic structure, kinetics 158 

and thermodynamic behavior of cation and anion in the perovskite crystal. 159 

 160 

5. Conclusions 161 

Fabrication and characterization of the lanthanide compound doped perovskite solar 162 

cells were performed for improving the photovoltaic performance with stability of con- 163 

version efficiency. Incorporation of FAI and EuCl2, EuBr2, Sm(acac)3 or Tb(acac)3 into the 164 

perovskite crystals on the photovoltaic performance were investigated. The addition of 165 
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FAI and EuCl2 improved the photovoltaic performance of JSC, EQE and η. The photovoltaic 166 

properties were based on the narrow band dispersion with decrease of effective mass. The 167 

carrier mobility related to Jsc depends on the charge transfer between 3d orbital of Eu 168 

atom, 5p orbital of iodine atom and 6p orbital of Pb atom in the crystal. Addition of 169 

Sm(acac)3 or Tb(acac)3 reduced the photovoltaic performances of JSC, EQE and the stability 170 

of η. The behavior was due to the flat band dispersion of the d orbital of Sm2+ ion and 4f 171 

orbital of Tb3+ ion near VB state. The stability was not maintained due to the absence of 172 

redox reaction based on charge transfer. The lanthanide-doped perovskite crystal had the 173 

photovoltaic characteristics based on the electronic structure. The Eu-doped perovskite 174 

crystal have advantage to apply for the photovoltaic devices with stability. 175 
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