

reproductive systems.

1

Microgravity-induced metabolic response in 2D and 3D TCam-	2
2 cell cultures ⁺	3
	4
Caterina Morabito1*, Simone Guarnieri1, Marika Berardini2, Luisa Gesualdi2, Francesca Ferranti3, Anna Reale4, Giulia	5
Ricci⁵, Angela Catizone², Maria A. Mariggiò¹	6
	7
¹ Dept of Neuroscience, Imaging and Clinical Sciences-CAST, "G. d' Annunzio" University of Chieti-Pescara, Chieti, Italy; caterina.morabito@unich.it,	8
simone.guarnieri@unich.it, maria.mariggio@unich.it	9
² Dept of Anatomy, Histology, Forensic-Medicine and Orthopedics, Section of Histology and Embryology, "Sapienza" University of Rome, Rome,	10
Italy; marika.berardini@uniroma1.it, luisa.gesualdi@uniroma1.it, angela.catizone@uniroma1.it	11
³ Human Spaceflight and Scientific Research Unit, Italian Space Agency, Rome, Italy; francesca.ferranti@asi.it	12
⁴ Dept of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy; anna.reale@uniroma1.it	13
⁵ Dept of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy; Giulia.RICCI@unicampania.it	14
* Correspondence: caterina.morabito@unich.it	15
+ Abstract submitted to Cells, Cells and Nothing but Cells: Discoveries, Challenges and Directions, Part of the International Online Conference on Cells	16
series, 6–8 Mar 2023; Session: CELLS_S3. Cellular Metabolism	17
	18
	19
The past few decades have seen an increasing number of both space travels and studies aimed at investigating the	20
effects induced by the space flights and environment on humans. One of the main feature of these conditions, is the	21
presence of an altered gravity mostly represented by microgravity experienced by astronauts. Microgravity is well	22

In the present study, we investigated the effect of simulated microgravity on the metabolic activity of male germ cells 25 using TCam-2 line as cell model. These cells were cultured in the Random Positioning Machine that simulated micro-26 gravity conditions, and were grown as 2D monolayers or 3D spheroids to assay the effects on single cells or on organ-27 like structure. After a 24 hour-exposure to simulated microgravity, TCam-2 monolayers showed: 1) a decreased prolif-28 eration rate and a delay in cell cycle progression; 2) increased anaerobic metabolism; 3) increased levels of reactive 29 oxygen species and superoxide anion; 4) modifications in mitochondrial morphology. After the same 24 hour-exposure, 30 TCam-2 spheroids showed: 1) an increased anaerobic and aerobic activity in 40% and 26% of samples, respectively; 2) 31 alterations in the redox balance with a decrease in catalase activity in about 65% of cell samples, therefore a deficit in 32 the cellular antioxidant capacity; 3) increases in oxidative damage to proteins and lipids in more than 50% of cell sam-33 ples. 34

known to induce deleterious effects at cellular, organ and systemic levels, including alterations in the male and female

In conclusion, these data demonstrated a clear inference of simulated microgravity on the metabolic activity of TCam-2 cells, which is expressed through the activation of an oxidative stress state, that, if not compensated for, could result deleterious over time. 37

> 38 39

23

24

Keywords

TCam-2 cells, cellular spheroids, simulated microgravity, ROS, oxidative stress, cellular metabolism

1

2