

Abstract

1

	2
Towards enzyme replacement therapy as a treatment for SSADH-deficiency	3
Miroslava Didiasova ¹ , Samuele Cesaro ² , Mariarita Bertoldi ² , Ritva Tikkanen ¹	4
	5
1 Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany	6
Email: Miroslava.Didiasova@biochemie.med.uni-giessen.de; Ritva.Tikkanen@biochemie.med.uni-giessen.de	7
² Department of Neuroscience, Biomedicine and Movement, Section of Biological Chemistry, University of Verona, Verona, Italy	8
Email: Samuele.cesaro@univr.it; Mita.bertoldi@univr.it	9
Abstract: Succinic semialdehyde dehydrogenase deficiency (SSADH-D) is a rare monogenic disorder of the γ -amino butyric	10
acid (GABA) metabolism. Various pathogenic mutations in aldehyde dehydrogenase 5 family member A1 (ALDH5A1) gene	11
are responsible for the enzymatic dysfunction of the succinic semialdehyde dehydrogenase (SSADH), an enzyme that plays	12
a key role in the breakdown of GABA. As a consequence, GABA and its potentially toxic metabolite γ -hydroxybutyrate	13
(GHB) accumulate in the brain and physiological fluids. The aim of this study was to produce and test different recombinant	14
SSADH proteins for an enzyme-replacement therapy for SSADH-D. The intracellular delivery of large bioactive molecules,	15
such as enzymes, requires that these molecules traverse not only the plasma membrane, but also further intracellular mem-	16
branes. Thus, a cell-penetrating peptide (Trans-activator of Transcription; Tat) was fused to the N-terminal part of SSADH.	17
This sequence was followed by mitochondrial targeting sequence (MTS), as SSADH is a mitochondrial enzyme (rHis-Tat-	18
MTS-SSADH). The sequence of human SSADH as well as MTS and Tat were optimized for efficient bacterial overexpression.	19
As a control, optimized sequences lacking MTS and Tat were produced either with (rHis-SSADH) or without His-tag	20
(rSSADH). In-vitro, purified rHis-SSADH and rSSADH, but not in rHis-Tat-MTS-SSADH, exhibited SSADH activity. Inter-	21
estingly, all produced recombinant enzymes displayed a highly efficient cellular and mitochondrial uptake in SSADH-D	22
patient fibroblasts. However, only rHis-SSADH and rSSADH were able to fully reconstitute the missing SSADH activity.	23
These effects were His-independent. Although rHis-Tat-MTS-SSADH reached the mitochondrial compartment, it was not	24
processed in the mature form and thus showed no SSADH activity. These results indicate that rHis-SSADH and rSSADH	25
are suitable candidates for further testing in an animal model for SSADH-D.	26