Cold Dark Matter and Leptogenesis in the SE₆SSM

Roman Nevzorov (Lebedev Physical Inst.)

ECU-2023

ECU-2023

1 / 12

Roman Nevzorov (Lebedev Physical Inst.)Cold Dark Matter and Leptogenesis

Outline

- 1. $U(1)_N$ extension of the MSSM
- 2. SE₆SSM
- 3. Leptogenesis
- 4. Dark matter-nucleon scattering cross-section
- 5. Conclusions

Based on:

R. Nevzorov, On the Suppression of the Dark Matter-Nucleon Scattering Cross Section in the SE_6SSM , Symmetry 14 (2022) no.10, 2090 [arXiv:2209.00505 [hep-ph]].

R. Nevzorov, Leptogenesis as an origin of hot dark matter and baryon asymmetry in the E_6 inspired SUSY models, Phys. Lett. B **779** (2018) 223.

ECU-2023

2 / 12

Roman Nevzorov (Lebedev Physical Inst.) Cold Dark Matter and Leptogenesis

$U(1)_N$ extension of the MSSM

- At very high energies E_6 group can be broken to $SO(10) \times U(1)_{\psi}$ with sequential breakdown of SO(10) to $SU(5) \times U(1)_{\chi}$ and SU(5) to the SM gauge group $SU(3)_C \times SU(2)_W \times U(1)_Y$.
- Near the GUT scale $U(1)_{\psi} \times U(1)_{\chi}$ symmetry can be broken to $U(1)_N \times Z_2^M$, where $Z_2^M = (-1)^{3(B-L)}$ is a matter parity while *B* and *L* are baryon and lepton numbers.
- Only in this E_6 inspired $U(1)_N$ extension of the MSSM (E_6 SSM) right-handed neutrinos N_i can be superheavy [S.F.King, S.Moretti, RN, Phys. Rev. D 73 (2006) 035009; Phys. Lett. B 634 (2006) 278.].
- To ensure anomaly cancellation the particle content of the E_6SSM is extended to include three complete 27_i representations of E_6 .
- Thus the E₆SSM contains extra exotic matter beyond the MSSM:
 - SM singlet superfields S_i that carry non-zero $U(1)_N$ charge;
 - H_i^d and H_i^u that have quantum numbers of the MSSM Higgs doublets;
 - the exotic quarks $(\overline{D}_i \text{ and } D_i)$ which are either diquarks or leptoquarks.

SE₆SSM

- Extra exotic matter may give rise to non-diagonal flavor transitions and rapid proton decay.
- In the modification of the E_6SSM (SE₆SSM) a single discrete \tilde{Z}_2^H symmetry forbids flavor-changing transitions as well as the most dangerous baryon and lepton number violating operators.
 - The SE₆SSM implies that below the GUT scale M_X three complete 27-plets are accompanied by lepton doublets L_4 and \overline{L}_4 , a pair of superfields S and \overline{S} as well as four E_6 singlet superfields (ϕ and ϕ_i).
 - The supermultiplets ϕ , *S*, \overline{S} , L_4 , \overline{L}_4 as well as $SU(2)_W$ doublets $H_d \equiv H_3^d$ and $H_u \equiv H_3^u$ are required to be even under the \tilde{Z}_2^H symmetry whereas all other supermultiplets are odd [R. Nevzorov, Phys. Rev. D 87 (2013) 015029; P. Athron, M. Mühlleitner, R. Nevzorov, A.G. Williams, JHEP 1501 (2015) 153.].
- The presence of L_4 and \overline{L}_4 at low energies allows the lightest exotic colored state to decay before BBN and facilitates the unification of gauge couplings.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- In the SE₆SSM the sector responsible for the breakdown of the gauge symmetry is formed by the scalar components of ϕ , *S*, \overline{S} , H_d and H_u .
 - S and \overline{S} can develop large vacuum expectation values (VEVs) along the D-flat direction breaking the $U(1)_N$ symmetry and generating masses of all exotic fermions and Z' boson.
- The conservation of Z_2^M and \tilde{Z}_2^H symmetries implies that *R*-parity and Z_2^E symmetry are also conserved where $\tilde{Z}_2^H = Z_2^M \times Z_2^E$.
- Here we focus on the scenarios in which gravitino is the lightest R-parity odd state so that it is stable and contributes to the density of dark matter.
- In this case the lightest exotic state, which is odd under the Z_2^E symmetry, has to be stable as well.
- We assume that the lightest stable exotic state is predominantly formed by the fermion components of H_1^d and H_1^u .
- In order to find a viable scenarios with stable gravitino one needs to ensure that the lightest unstable R-parity odd (or exotic) state Y decays before BBN, i.e. its lifetime $\tau_Y \lesssim 1 \text{ sec.}$

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- For $m_Y \simeq 1$ TeV one can get $\tau_Y \lesssim 1$ sec if gravitino mass $m_{3/2} \lesssim 1$ GeV.
- When gravitinos originate from scattering of particles in the thermal bath their contribution to the dark matter density is proportional to the reheating temperature T_R

$$\Omega_{3/2}h^2 \sim 0.27 \left(\frac{T_R}{10^8 GeV}\right) \left(\frac{1 \text{ GeV}}{m_{3/2}}\right) \left(\frac{M_{\tilde{g}}}{1 \text{ TeV}}\right)^2$$

- Since $\Omega_{3/2}h^2 \leq 0.12$ for $m_{3/2} \simeq 1$ GeV and gluino mass $M_{\tilde{g}} \gtrsim 3$ TeV one finds an upper bound $T_R \lesssim 10^{6-7}$ GeV.
- Even for so low reheating temperatures the appropriate amount of the lepton asymmetry can be induced within the SE₆SSM via the decays of the lightest right-handed neutrino/sneutrino (N_1 / \widetilde{N}_1).

イロト 不得 トイヨト イヨト 二日

ECU-2023

6 / 12

• Due to sphaleron interactions the generated lepton asymmetry is converted into the baryon asymmetry.

Leptogenesis

• The interactions of the superfields *N_i* are described by

 $W_N = \frac{1}{2} M_i N_i N_i + \tilde{h}_{ij} N_i (H_u L_j) + h_{i\alpha} N_i (H_\alpha^u L_4).$

- After inflation the lightest right-handed neutrino/sneutrino (N_1 / \tilde{N}_1) with mass M_1 may be produced by thermal scattering if $T_R > M_1$.
- To guarantee that leptogenesis takes place we set $M_1\simeq 10^5~{
 m GeV}.$
- We also assume that $M_{2,3} \lesssim 10^6 \,\text{GeV}$.
- In order to reproduce the left-handed neutrino mass scale $m_{\nu} \lesssim 0.1 \, \text{eV}$ the couplings of ordinary leptons L_j to N_i should be rather small, i.e. $|\tilde{h}_{ij}|^2 \ll 10^{-8}$, and can be ignored.
- Then the lepton asymmetry can be generated via the decays $N_1 \rightarrow L_4 + H^u_{\alpha}, \quad N_1 \rightarrow \widetilde{L}_4 + \widetilde{H}^u_{\alpha}, \quad \widetilde{N}_1^* \rightarrow L_4 + \widetilde{H}^u_{\alpha}, \quad \widetilde{N}_1 \rightarrow \widetilde{L}_4 + H^u_{\alpha}.$
- This process is controlled by the set of CP asymmetries Γ^{α}

$$\varepsilon_{1,\ell_{4}}^{\alpha} = \varepsilon_{1,\tilde{\ell}_{4}}^{\alpha} = \varepsilon_{\tilde{1},\ell_{4}}^{\alpha} = \varepsilon_{\tilde{1},\ell_{4}}^{\alpha} = \frac{\Gamma_{N_{1}\ell_{4}} - \Gamma_{N_{1}\tilde{\ell}_{4}}}{\sum_{\beta} \left(\Gamma_{N_{1}\ell_{4}}^{\beta} + \Gamma_{N_{1}\tilde{\ell}_{4}}^{\beta} \right)}$$

- ロト - (同 ト - (回 ト -) 回 ト -) 回

- H^{μ}_{α} can be redefined so that only H^{μ}_{1} interacts with L_{4} and N_{1} so that h_{12} may be set to zero and $\varepsilon^{2}_{1,\ell_{4}} = \varepsilon^{2}_{1,\ell_{4}} = \varepsilon^{2}_{1,\ell_{4}} = \varepsilon^{2}_{1,\ell_{4}} = 0$.
- Assuming that the sparticle mass scale M_S is negligibly small as compared with M_1 , $h_{j1} = |h_{j1}|e^{i\varphi_{j1}}$ and M_j are real one finds

$$\begin{split} \varepsilon_{1,\ell_4}^1 &= \varepsilon_{1,\tilde{\ell}_4}^1 = \varepsilon_{\tilde{1},\ell_4}^1 = \varepsilon_{\tilde{1},\tilde{\ell}_4}^1 = \varepsilon = \frac{1}{8\pi} \left[\sum_{j=2,3} |h_{j1}|^2 f\left(\frac{M_j^2}{M_1^2}\right) \sin 2\Delta\varphi_{j1} \right] \\ \Delta\varphi_{j1} &= \varphi_{j1} - \varphi_{11} \,, \qquad f(z) = \frac{2\sqrt{z}}{1-z} - \sqrt{z} \,\ln\left(\frac{1+z}{z}\right) \,. \end{split}$$

• For $h_{31} = 0$ and $h_{21} = 0.1$ one can obtain $\varepsilon \simeq 0.01$ if $M_2 \approx M_1$.

• The induced baryon asymmetry can be estimated as follows $Y_{\Delta B} \sim 10^{-3} \left(\varepsilon \cdot \eta \right), \qquad Y_{\Delta B} = \left. \frac{n_B - n_{\bar{B}}}{s} \right|_0 = (8.75 \pm 0.23) \times 10^{-11}.$

 $\bullet\,$ In the strong washout scenario the efficiency factor η is given by

$$\eta \simeq \frac{H(T = M_1)}{\Gamma_1}, \qquad H = 1.66g_*^{1/2}\frac{T^2}{M_P}, \qquad \Gamma_1 = \frac{|h_{11}|^2}{8\pi}M_1.$$

• For $\varepsilon \simeq 0.01$ the observed $Y_{\Delta B}$ can be reproduced if $|h_{11}| \sim 0.001$.

Dark matter-nucleon scattering cross section

- The scalar components of ϕ_i , S_i , H^u_{α} and H^d_{α} do not acquire VEVs.
- Their fermion components form the exotic (inert) neutralino and chargino states.
- When the components of ϕ_i are very heavy the interactions of S_i , H^u_{α} and H^d_{α} are described by

 $W_{IH} \simeq -\widetilde{\mu}_i S_i S_i + \lambda_{\alpha\alpha} S(H^d_{\alpha} H^u_{\alpha}) + \widetilde{f}_{i\alpha} S_i (H^d_{\alpha} H_u) + f_{i\alpha} S_i (H_d H^u_{\alpha}).$

- Here we assume that H_1^d and H_1^u mostly interact with S_1 , H_u and H_d , whereas all other couplings of H_1^u and H_1^d are very small.
- The mass of the lightest exotic chargino is determined by $\mu_{11} = \lambda_{11} \langle S \rangle$, i.e. $m_{\chi_1^{\pm}} = |\mu_{11}|$.
- If $|\tilde{\mu}_1|$ is considerably larger than $|\mu_{11}|$, $\langle H_d \rangle = v_1$ and $\langle H_u \rangle = v_2$ the mass of the lightest exotic state χ_1 is given by

$$m_{\chi_1} \simeq m_{\chi_1^\pm} - \Delta_1, \qquad \Delta_1 \simeq rac{(\widetilde{f}_{11}v_2 + f_{11}v_1)^2}{2(\widetilde{\mu}_1 - m_{\chi_1^\pm})}\,.$$

- The contribution of χ_1 to the dark matter density can be estimated as $\Omega_{\tilde{H}}h^2\simeq 0.1\,\left(\frac{\mu_{11}}{1\,\text{TeV}}\right)^2\,.$
- Thus in the phenomenologically viable scenarios $\mu_{11} < 1.1 \text{ TeV}$.
- Since the couplings of gravitino to the SM particles are negligibly small, the interactions of the dark matter with the baryons are determined by the couplings of χ_1 .
- The dominant contribution to the spin-independent (SI) dark matter-nucleon scattering cross section σ_{Sl} comes from the t-channel exchange of the lightest CP-even Higgs boson h_1 with mass m_{h_1}

$$\begin{split} \sigma_{SI} &= \frac{2m_r^2 m_N^2}{\pi v^2 m_{h_1}^4} |g_{h_1\chi_1\chi_1} F^N|^2 \,, \quad F^N = \sum_{q=u,d,s} f_{Tq}^N + \frac{2}{27} \sum_{Q=c,b,t} f_{TQ}^N \,, \\ m_r &= \frac{m_{\chi_1} m_N}{m_{\chi_1} + m_N} \,, \quad m_N f_{Tq}^N = \langle N | m_q \bar{q} q | N \rangle \,, \quad f_{TQ}^N = 1 - \sum_{q=u,d,s} f_{Tq}^N \,. \\ \text{Here } v &= \sqrt{v_1^2 + v_2^2} \simeq 174 \,\text{GeV} \,, \ g_{h_1\chi_1\chi_1} \simeq \Delta_1 / (\sqrt{2}v) \text{ and hadronic} \\ \text{matrix elements } f_{Ts}^N \simeq 0.0447 \,, \ f_{Td}^N \simeq 0.0191 \text{ and } f_{Tu}^N \simeq 0.0153 \,. \end{split}$$

- We set $\tilde{f}_{11} = -0.5$, $\tan \beta = \frac{v_2}{v_1} = 2$ and $\tilde{\mu}_1 = 2$ TeV.
- The values of σ_{SI} remain smaller than 60 yb for $m_{\chi_1} \simeq \mu_{11} = 200 \text{ GeV}$ (solid lines) and 300 yb for $m_{\chi_1} \simeq \mu_{11} = 1$ TeV (dashed lines) which are the values of the experimental bounds on σ_{SI} obtained by the LZ experiment [J. Aalbers, et al. [LUX-ZEPLIN Collaboration], arXiv:2207.03764].
- The suppression of σ_{SI} is caused by large $\tilde{\mu}_1$ as well as by the partial cancellation of different contributions to $g_{h_1\chi_1\chi_1}$.

Roman Nevzorov (Lebedev Physical Inst.) Dark Matter and Leptogenesis

Conclusions

- We explored the SE₆SSM scenarios in which cold dark matter density is formed by the gravitino and the lightest exotic neutralino χ_1 .
- The phenomenological viability of these scenarios implies that the gravitino mass $m_{3/2}$ should be smaller than 1 GeV and the reheating temperatures T_R has to be lower than 10^6 GeV.
- Even for so low T_R the decays of the lightest right-handed neutrino/sneutrino can induce the observed baryon asymmetry.
- In the scenarios under consideration there is a part of the SE₆SSM parameter space in which the dark matter–nucleon scattering cross section is substantially smaller than the present experimental limits.
- In these scenarios the lightest exotic chargino χ_1^{\pm} as well as the lightest exotic neutralino states χ_2 and χ_1 are nearly degenerate and have masses below 1.1 TeV.
- Since the mass splitting between these states is very small the decay products of χ_2 and χ_1^{\pm} are too soft so that they escape detection.

- 4 同 6 4 日 6 4 日 6