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Abstract: Pauli established the standard view that the spin of the electron was a completely abstract, 

non-classical angular momentum, that could not be thought of as the rotation of anything. Here we 

give a pedagogical presentation of old work by Belifante (1939) recently updated by Ohanian (1986) 

which shows that contrary to Pauli’s edict, the spin of the electron can be viewed as the rotational 

angular momentum in the wave field of the electron. 
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1. Introduction 

The standard view of the spin of the electron is that it is an internal angular momen-

tum which cannot be pictured as a tiny rotating ball or in fact as the rotation of anything 

[1]. If one were to picture the spin of the electron as coming from the rotation of a spherical 

shell of radius xxx, mass, xxx and having an angular momentum of hbar/2 then one would 

find that points on the surface of this spherical shell would need to move a ~100 the speed 

of light, which is impossible. Based on these types of arguments Pauli declared that no 

two electrons have the same quantum states. 

However, quite early in the formulation of quantum theory, Belinfante [2] and Gor-

don [3] argued that one could interpret the spin and a rotating angular momentum com-

ing from a rotating energy-momentum in the Dirac field the describes the electron.  

Here, we review the arguments of Belinfante and Gordon, as well as more recent 

work by Ohanian which shows in details how the spin of the electron can be seen as a 

rotation of energy-momentum in the Dirac wave field. This shows that electron spin is 

exactly of the same character as any other angular momentum, rather than some mysteri-

ous quantum property. We start by showing how this view point can be applied to the 

electromagnetic field to get the spin of the photon and then we move to the Dirac field to 

obtain the spin of the electron. 

2. Spin of the Electromagnetic Field 

In this section we obtain the spin of the photon using the same method we will use 

in the next section to obtain the spin of the electron. The reason for this is that this shows 

the connection between and commonality of the spin coming from Maxwell’s equations 

and the Dirac equation.  

The momentum density carried by the electromagnetic field is �⃗� =
�⃗⃗⃗� × �⃗⃗⃗�

𝝁𝟎𝒄𝟐 . From this 

one can obtain the angular momentum density as 𝒥 =
�⃗⃗⃗� × (�⃗⃗⃗� × 𝑩)⃗⃗ ⃗⃗ ⃗

𝝁𝟎𝒄𝟐   

For example, it depicts the time averaged transverse energy flow of a circularly po-

larized wave is moving in the direction of z. The wave exhibits cylindrical symmetry in 

the z axis and a finite extent in x and y directions. The wave also has a translational energy 

in z-direction but the net energy flow is helical. 

Expressing the net angular momentum as a sum of two terms: 
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�⃗⃗⃗� =  
�⃗⃗⃗� × �⃗⃗⃗�

𝝁𝟎𝒄𝟐  =  
�⃗⃗⃗� × (𝛁 × �⃗⃗⃗�)

𝝁𝟎𝒄𝟐  (1) 

Using the triple product vector formula; we have 

�⃗⃗⃗� =
[𝑬𝒏𝛁 𝑨𝒏 − (�⃗⃗⃗�. 𝛁)�⃗⃗⃗�]

𝝁𝟎𝒄𝟐
 

 

Correspondingly, the angular momentum is a sum of two terms  

𝐽 =  
1

𝜇0𝑐2
∫ 𝑥 ×  (�⃗⃗�𝑛∇𝐴𝑛)𝑑3𝑥 +

1

𝜇0𝑐2
 ∫ 𝑥 ×  [−(�⃗⃗�. ∇)𝐴]𝑑3𝑥 (2) 

Using an integration by parts, with ∇ . �⃗⃗� = 0, then it becomes as, 

𝐽 =  
1

𝜇0𝑐2
∫ 𝑥 ×  (�⃗⃗�𝑛∇𝐴𝑛)𝑑3𝑥 +

1

𝜇0𝑐2
∫(�⃗⃗�  ×  𝐴) 𝑑3𝑥 (3) 

The first term in above equation represents the orbital angular momentum and the 

second term represents the spin. 

To justify this interpretation, consider a circularly polarized plane wave with vector 

potential.  

𝐴 = (�̂�  ± 𝑖�̂�) (
𝑖𝐸0

𝜔
) 𝑒𝑖𝜔(𝑡−

𝑧
𝑐

)  

 The time-average values of the integrals from Equation (3) are 

�⃗⃗� = 
1

2𝜇0𝑐2 ∫ 𝑅𝑒 (𝑥 × (𝐸𝑛∇𝐴∗𝑛)𝑑3𝑥)  

(𝐸𝑥∇𝐴∗𝑥) =  
𝐸0

2

𝑐
 �̂�, What are you doing here?  

(𝐸𝑦∇𝐴∗𝑦) =  
𝐸0

2

𝑐
 �̂� What are you doing here? Explain this step 

Therefore, 𝐸𝑛∇𝐴∗𝑛 =  
2𝐸0

2

𝑐
 �̂� 

Substitute in above equation, we get, 

�⃗⃗� =  
1

𝜇0𝑐3  ∫ �⃗�  × (�̂�𝐸0
2)𝑑3𝑥  (4) 

Now, 

𝑆 =
1

2𝜇0𝑐2  ∫ 𝑅𝑒 (𝐸 × 𝐴∗)𝑑3𝑥  (5) 

E = (�̂�  ± 𝑖�̂�) 𝐸0𝑒𝑖𝜔(𝑡−
𝑧

𝑐
)
(𝑒𝛼), Assume 𝑒𝛼 as exponential term and alpha is the vector. 

Now, consider 𝐸 × 𝐴∗; we get 𝐸 × 𝐴∗ =  ± 
2𝐸0

2

𝜔
 �̂� 

Therefore,  

S = ±
𝑬𝟎

𝟐

𝝁𝟎𝒄𝟐𝝎
 ∫ 𝒅𝟑𝒙 �̂�   

The first of these expressions is polarization independent, and is exactly what we 

expect for the plane wave’s orbital angular momentum. Because, the second expression is 

not affected by the polarization. We must identify it as the spin. But, the individual inte-

grals in equation are not gauge invariant. 

The energy density in the wave equation is 

 

𝑈 =  
1

2𝜇0𝑐2  ∫ 𝑅𝑒 (𝐸. 𝐸∗)𝑑3𝑥  (6) 

Here, E =  (�̂�  ± 𝑖�̂�) 𝐸0𝑒𝑖𝜔(𝑡−
𝑧

𝑐
) and 𝐸∗ = (�̂�  ∓  𝑖�̂�) 𝐸0𝑒−𝑖𝜔(𝑡−

𝑧

𝑐
)  

Now, consider the real part of the energy density in Equation (6), then we get  
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𝐸. 𝐸∗ =  𝐸0
2 + 𝐸0

2 i.e., 𝑅𝑒(E.𝐸∗) = 2𝐸0
2  

Then, the energy density equation becomes as (7)  

𝑈 =  
1

𝜇0𝑐2  ∫ 𝐸0
2 𝑑3𝑥  (7) 

From spin and energy density equations, we have 
𝑆𝑧

𝑈
 = ±

1

𝜔
 . 

If we normalize the wave, then the energy is one quantum U = ℏ𝜔, then the spin will 

be Sz = ±ℏ.  

3. Dirac Field Angular Momentum 

I am done with the similar calculations done in Section 1 for the electromagnetic field, 

but now for the Dirac field [4]. First the momentum density of the Dirac field is given by  

�⃗� =
ℏ

4𝑖
(𝜓†∇𝜓 − 𝜓†�⃗�𝜕𝑡𝜓) + ℎ𝑐   

where hc stands for Hermitian conjugate, ψ is the Dirac spinor field, and �⃗� are Dirac ma-

trices may be giving a cite to the standard form of the alpha. The time derivative in above 

equation can be eliminated by means of Dirac equation 
1

𝑐

𝜕𝜓

𝜕𝑡
= (−�⃗�. ∇ + 

𝑚𝑐2

𝑖ℏ
 𝛽) 𝜓. 

It gives, 

�⃗� = (
ℏ

4𝑖
) (𝜓†∇𝜓 + 𝜓†�⃗�(�⃗�. ∇)𝜓) + ℎ𝑐   

Then the commutation relations for  

𝛼𝑘, �⃗� = (
ℏ

2𝑖
) (𝜓†∇𝜓 − (∇𝜓†)𝜓) +  

ℏ

4
 ∇  × (𝜓†σ𝜓)   

where σ1 =  −𝑖𝛼2𝛼3 , σ2 =  −𝑖𝛼3𝛼1, σ3 =  −𝑖𝛼1𝛼2  

The first term in above equation is the translational motion of the electron, whereas 

the second term is the circulating flow of energy. 

For example, consider the Gaussian packet, 

𝜓 = (𝜋𝑑2)−
3

4𝑒−(
1

2
)

𝑟

𝑑

2

𝜔|(0);   

It defines an electron spin with zero expectation value of the momentum.  

From above equation, the first term is zero and the second term is, 

�⃗⃗⃗�= 
ℏ

𝟒
 (

𝟏

𝝅𝒅𝟐)𝟑/𝟐  
𝒆

𝒅𝟐

−
𝒓𝟐

𝒅𝟐 (−𝟐𝒚 𝒙 + 𝟐𝒙�̂�)  
 

In case of an electromagnetic wave, the angular momentum rises due to a circulating 

flow of energy. Then, the angular momentum is the spin of an electron. Therefore, the net 

angular momentum is,  

𝐽 =  ∫
ℏ

2𝑖
𝑥 × [𝜓†∇𝜓 − (∇𝜓†)𝜓]𝑑3𝑥 +  ∫

ℏ

4
𝑥 × [∇  × (𝜓†σ)𝜓]𝑑3𝑥  (8) 

Using the triple cross product in the second term can be expanded into two dot prod-

ucts and then integrate both of these in by parts. Then it gives, 

𝐽 =  
ℏ

2𝑖
∫ 𝑥 × [𝜓†∇𝜓 − (∇𝜓†)𝜓]𝑑3𝑥 +

ℏ

2
∫ 𝜓†�⃗� 𝜓 𝑑3𝑥   (9) 

Here, the spin is the second term and the first term is the orbital angular momentum. 

From the spin in above equation, the expectation value of the quantum mechanical 

operator �⃗�, the operator representing the spin must be 

Sop = 
ℏ

2
 �⃗�   

It yields the value ± 
ℏ

2
 for the integral Sz.  
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4. Summary and Conclusions 

As stated in previous sections, spin is fundamentally a quantum mechanical feature. 

The type of wave is less important in these calculations than the fact that spin is ultimately 

a wave feature. The spin of a classical wave is a continuous macroscopic quantity, whereas 

quantum spin is quantized and represented by a quantum mechanical operator. This is 

the fundamental distinction between the spins of the two types of waves. Because the spin 

of a quantum mechanical particle has a fixed magnitude, reaching the classical limit is 

impossible.  

We first calculated the spin of the photon starting with the Maxwell’s equations and 

the spin of the electron in the next section.  
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