Imprint of the crystallization of binary white dwarfs on gravitational-wave observations with LISA

> L. Perot and N. Chamel 2nd Electronic Conference on Universe

> > 16 February - 02 March 2023

< D >

Motivations

- Future detection of up to 10⁴ binary WDs with the space-based GW detector LISA
- Measurement of tidal effects will be possible during the inspiral phase, a few millions of years before the merger
- Previous studies considered only perfect-fluid stars in Newtonian theory
- Current strong observational evidences of crystallization of WD cores from GAIA

Inspiralling stars

- The stars are far away:
 - same dynamics as black holes with same masses
 - universal GW signal and calculation by the PN method
- The stars are getting closer:
 - tidal deformations
 - perturbative calculation and PN corrections to the GW signal

Tidal deformability of white dwarfs

• Assumptions:

- static stars (non-rotating)
- deformations remaining small in comparison to the star radius
- At linear order, the quadrupolar tidal field \mathcal{E}_{ij} induces a quadrupolar moment \mathcal{Q}_{ij} :

$$\mathcal{Q}_{ij} = \frac{2}{3G} k_2 R^5 \mathcal{E}_{ij}$$

with R the stellar radius and k_2 the tidal Love number (also called apsidal motion constant)

• Dimensionless measurable tidal parameter (correction of order 5 PN):

$$\Lambda_2 \sim k_2 R^5$$

 \rightarrow the tidal deformability depends on the microphysics

Tidal deformability of white dwarfs

- The tidal deformability can be computed solving the perturbed Einstein equations
- Taking into account elasticity of crystallized matter:

$$\delta G_{\mu\nu} = \frac{8\pi G}{c^4} (\delta T_{\mu\nu} + \delta \Pi_{\mu\nu})$$

with $\delta T_{\mu\nu}$ the perturbed perfect-fluid stress-energy tensor, and $\delta \Pi_{\mu\nu}$ the perturbed strain tensor

- The tensor $\delta \Pi_{\mu\nu}$ contains the shear modulus
- System of 6 ODEs to be solved in the elastic region with the appropriate boundary conditions at the center and at the surface

伺 と く ヨ と く ヨ と

Impact of crystallization on the tidal deformability

- Core consisting of fully ionized atomic nuclei coexisting with a relativistic gas of free electrons at T = 0 K
- Results in full general relativity comparing WDs entirely fluid or entirely elastic
- Non-negligible impact, especially for low mass stars: deviation of about 5 % for a typical $0.4M_{\odot}$ carbon or oxygen WD

Impact of crystallization on the tidal deformability

- Core consisting of fully ionized atomic nuclei coexisting with a relativistic gas of free electrons at T = 0 K
- Results in full general relativity comparing WDs entirely fluid or entirely elastic
- Increasingly impact in the presence of heavy elements: deviation of 2 % and 12 % for $0.3M_{\odot}$ helium and iron WDs

Newtonian vs relativistic results

- Comparison between Newtonian and fully relativistic results for k_2 and R
- General relativity systematically reduces k_2 and R
- For low mass WDs, relativistic corrections remain negligible in comparison with corrections due to elasticity, but become larger when approaching the Chandrasekhar limit (up to 10% near the maximum mass)

Newtonian vs relativistic results

- Comparison between Newtonian and fully relativistic results for the observable combination $k_2 R^5$
- The errors due to the neglect of relativistic corrections remain negligible pour low mass WDs, but become very large near the maximum mass (up to 100% !)

Perot & Chamel, PRD 106, 023012 (2022)

Eccentric binaries

- The precession of the periastron of eccentric binaries leads to the frequency splitting of the GW signal
- $\bullet\,$ The frequency splitting is proportional to the precession rate $\dot{\gamma}$
- The precession rate is the sum of 3 contributions:

$$\dot{\gamma} = \dot{\gamma}_{\rm GR} + \sum_{i=1,2} \dot{\gamma}_{\rm rot,i} + \dot{\gamma}_{\rm tid,i} \,, \label{eq:grading}$$

where $\dot{\gamma}_{GR}$ comes from general relativity, $\dot{\gamma}_{rot,i}$ from the rotation and $\dot{\gamma}_{tid,i}$ from the tidal effects in each star

• $\dot{\gamma}_{\rm GR}$ depends only on the total mass whereas $\dot{\gamma}_{\rm rot,i}$ and $\dot{\gamma}_{\rm tid,i}$ depend on the individual masses and the parameters $(k_2 R^5)_i$!

伺 と く ヨ と く ヨ と

Eccentric binaries

- For the tidal effects to be measurable, $\sum_{i=1,2} \dot{\gamma}_{rot,i} + \dot{\gamma}_{tid,i}$ has to represent at least \sim 10 % of $\dot{\gamma}$ (observational uncertainties) \rightarrow this is achieved a few millions of years before the merger
- By computing the binary parameters evolution, we show it is possible to currently find such binaries in the LISA sensitivity band and aged of at least \sim 5 Gyr (estimated time for the core to crystallize)

Eccentric binaries

- Measuring $\sum_{i=1,2} \dot{\gamma}_{rot,i} + \dot{\gamma}_{tid,i}$ provides a way to deduce the individual masses of the WDs
- We need a relation between M_i and $(k_2 R^5)_i$
- Neglecting elasticity of the crystallized core can lead to dramatic errors on the inferred masses, especially for low mass WDs!

Perot & Chamel, PRD 106, 023012 (2022)

- Crystallization has the biggest impact on k₂ for low mass WDs with heavy elements → way to probe existence of iron WDs?
- Relativistic corrections on k₂R⁵ are negligible for low mass WDs but become very important when approaching the maximum mass
- Neglecting crystallization when trying to deduce individual masses from eccentric binaries can lead to dramatic errors on the masses, especially for low mass stars

 \rightarrow More details and results in:

https://doi.org/10.1103/PhysRevD.106.023012