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Abstract: Dark matter in the Milky Way is explained by the F-type of vacuum polarization, which 

could represent dark radiation. A nonsingular solution for dark radiation exists in the presence of 

eicheon (i.e., black hole in old terminology) in the galaxy’s center. The model is spherically symmet-

ric, but a surface density of a baryonic galaxy disk is taken into account approximately by smearing 

the disk over a sphere. 
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Observation of the stellar orbits around the center of the Milky Way [1] is considered 

as evidence of an extremely compact astrophysical object existence with a radius of an 

order of a Schwarzschild one. Conversely, an exact Schwarzschild solution of the general 

relativity (GR) equations exists [2]. A principal question is whether the Schwarzschild so-

lution describes reality. This question is also related to the need for dark matter to explain 

the galactic rotational curves [3]. Modification of GR explaining rotational curves without 

dark matter as the MOND was suggested [4]. However, could we go without extraordi-

nary physics but take vacuum polarization into account correctly [5]? The answer is no in 

a frame of renormalizable quantum field theory on a curved background. Still, this ap-

proach demands covariance of the mean value of the energy-momentum tensor over the 

vacuum state. This demand has no hard background because it is known that vacuum 

stare invariant relative general transformation of coordinates does not exist. On the con-

trary, an argument is put forward that the preferred reference frame exists based on the 

conformally-unimodular metric for describing vacuum polarization [6]. 

The conformally-unimodular metric for a spherically symmetric space-time is writ-

ten as 
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𝑠2 = 𝑎2(𝑑𝜂2 − �̃�𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗) = 𝑒2𝛼(𝑑𝜂2 − 𝑒−2𝜆(𝑑𝐱)2 − (𝑒4𝜆 − 𝑒−2𝜆)(𝐱𝑑𝐱)2/𝑟2),      (1) 

where 𝑟 = |𝐱|, 𝑎 = 𝑒𝛼 , and 𝜆 are the functions of 𝜂, 𝑟. The matrix �̃�𝑖𝑗 with the unit deter-

minant is expressed through 𝜆(𝜂, 𝑟). The interval (1) rewritten in the spherical coordinates 

is [7]: 

𝑑𝑠2 = 𝑒2𝛼(𝑑𝜂2 − 𝑒4𝜆𝑑𝑟2 − 𝑒−2𝜆𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2)) (2) 

As it was shown [5,7], a nonsingular solution exists in this metric for the compact 

object of any mass (see, e.g., Figure 1a), for example, consisting of incompressible fluid. In 

the metric of the Schwarzschild type of 

𝑑𝑠2 = 𝐵(𝑅)𝑑𝑡2 − 𝐴(𝑅)𝑑𝑅2 − 𝑅2𝑑Ω2. (3) 

These objects look like hollow spheres that prevent the appearance of infinite pres-

sure. The inner 𝑅𝑖 and the outer 𝑅𝑓 radiuses (see Figure 2b) of this spherical shell exceed 

the Schwarzschild radius and the Buchdahl’s bound [8] 𝑚 < 4𝑅/9𝐺 is not reached. 

Considering vacuum polarization for the arbitrary curved space-time background is 

a highly complex problem. Instead, one could consider scalar perturbations of the confor-

mally-unimodular metric: 

𝑑𝑠2 = (1 + Φ(𝜂, 𝐱))
2
(𝑑𝜂2 − ((1 +

1

3
∑ 𝜕𝑚

2 𝐹(𝜂, 𝐱)

3

𝑚=1

)𝛿𝑖𝑗 − 𝜕𝑖𝜕𝑗𝐹(𝜂, 𝐱)) 𝑑𝑥
𝑖𝑑𝑥𝑗) (4) 

and calculate a spatially nonuniform energy density and pressure arising due to vacuum 

polarization in the eikonal approximation [5]. 

As was shown [5], this energy density and pressure of vacuum polarization corre-

sponding to the F-type of metric perturbations (4) have the radiation equation of state. 

That gives a hypothetical possibility to use dark radiation in some nonlinear models. One 

could use it in the Volkov-Tolman-Oppenheimer (TOV) equation as a heuristic picture. 

For a radiation substance alone, a singular solution of a TOV equation exists, thus, having 

no physical meaning [9]. 

 
 

(a) (b) 

Figure 1. Nonsingular eicheon surrounded by dark radiation in conformally-unimodular metric (2) 

has nonsingular core (a). In the Schwarzschild type metric (3), this core looks like a hollow sphere 

(b). 
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However, the situation changes cardinally in the conformally-unimodular metric, in 

the presence of the nonsingular eicheon, which gives a possibility to set a boundary con-

dition for radiation fluid at 𝑟 = 0 and obtain nonsingular solution including the dark ra-

diation. In the Schwarzschild type metric (3), the boundary condition is set at the radial 

coordinate of an inner shell 𝑅 = 𝑅𝑖, which corresponds to the point 𝑟 = 0 in the confor-

mally-unimodular metric. As a result, such radiation fluid models a dark matter in the 

Milky Way as it is shown in Figure 1a, where one could see the contribution of the eicheon 

at a small distance and the contribution of a dark radiation at large distances. This is spher-

ically symmetric model, where an amount of dark radiation is adjusted to fit the observa-

tions. To take the baryonic matter into account, one could smear a baryonic galactic disk 

on a sphere and consider the resulting mass density as some external non-dynamical den-

sity in the TOV equations for the eicheon and dark radiation. This external density creates 

an additional gravitational potential. 

Let we have a surface density of matter in a galactic disk: 

℘ =
𝑀𝐷

2𝜋𝑅𝐷
2 𝑒

−𝑅/𝑅𝐷  (5) 

and write the mass 𝑑𝑀 corresponding to the radial distance 𝑑𝑅 

𝑑𝑀 =
𝑀𝐷

𝑅𝐷
2 𝑒

−𝑅/𝑅𝐷𝑅𝑑𝑅 =
𝑀𝐷

𝑅𝐷
2𝑅

𝑒−𝑅/𝑅𝐷𝑅2𝑑𝑅. (6) 

According to (6), the smeared 3-dimensial density has the form 

𝜌 =
𝑀𝐷

4𝜋𝑅𝐷
2𝑅

𝑒−𝑅/𝑅𝐷  (7) 

The result of the calculations for the Milky Way rotational curve is shown in Figure 

2. 

  
(a) (b) 

Figure 2. (a) Calculated rotational curve from Ref. [5], which includes contributions of the eicheon 

and dark radiation. (b) Rotational curve taking into account the baryonic matter by (5)–(7). The re-

sult of observations with the error bars are taken from Ref. [3]. 

As one can see, the simple model with smeared disk describes baryonic matter 

roughly, but the observed rotational curve has a more complicated structure. Let us re-

mind the principles of calculation. We have considered the vacuum polarization of F-type 

in the conformally-unimodular metric (4) and find that it has a radiation equation of state. 

Then solve the TOV equation for incompressible fluid and dark radiation and obtain a 

nonsingular solution. To consider the baryonic matter, we smear a galactic disk and use 

the resulting density as some external density. 
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