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Abstract: It is well known that the universe is undergoing accelerated expansion during recent times,
and that it underwent decelerated expansion at early times. The deceleration parameter, which is
essentially the second derivative of the scale factor, can be used to describe these eras, with a negative
parameter for acceleration, and a positive parameter for deceleration. Apart from the standard ΛCDM
model in general relativity, there are many cosmological models in various other theories of gravity. In
order to describe these models, especially the deviation from general relativity, the jerk parameter was
introduced, which is basically the third derivative of the scale factor. In the ΛCDM model in general
relativity, the jerk parameter j is constant and j = 1. The constant jerk parameter, j = 1, leads to two
different scale factor solutions, one power-law and the other exponential. The power law solution
corresponds to a model in which our universe expands with deceleration, while the exponential
solution corresponds to the model in which it expands by accelerating. In this study, the cosmological
consequences of such a selection of the jerk parameter on non-minimally coupled f (R, T) theory
of gravity (where R is the Ricci scalar and T is the trace of the energy-momentum tensor), and the
dynamic properties of these models, are investigated on a flat Friedmann-Lemaitre-Robertson-Walker
background.
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1. Introduction

It is known that while our universe was in a period of decelerated expansion in the
past, it is in a period of accelerated expansion at the late time. The accelerated expansion
has been indicated by several astrophysical observations [1–4]. Einstein’s General Relativity
(GR) cannot adequately explain this late-time acceleration. Therefore, various suggestions
have been put forward to explain this acceleration. One of them is the concept of dark
energy (DE), which connects accelerated expansion to an energy of unknown nature with
negative pressure. Apart from the standard Λ cold dark matter (ΛCDM) model in GR, in
this framework, various DE terms are added to the energy momentum tensor on the right-
hand side of Einstein’s field equations [5–13]. Another attempt to explain this accelerated
expansion is modified gravitation theories. Amongst these, f (R, T) theory is important
because it is a modified theory through a function that depends on both the curvature (R)
and the matter source T[14]. In other words, the geometry-matter coupling is considered in
f (R, T) theory. In this theory, various universe models are studied by taking different forms
of the f (R, T) function. But in general, it would not be wrong to say that non-minimally
coupling forms are less considered [15–18].

In the present study, we consider f (R, T) gravity on the background of the flat
Friedman-Lemaitre-Robertson-Walker (FLRW) universe for a non-minimal coupling form
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such as f (R, T) = f1(R) + f2(R) f3(T). To solve the field equations, we assume that the jerk
parameter j is constant, and j = 1. One of the two solutions to this assumption corresponds
to the past period when the universe expanded by decelerating, and the other corresponds
to the late period when it expanded by accelerating. In Section 2, the field equations of
f (R, T) gravity are given, the solutions of the field equations and their consequences are
derived in Section 3, and the conclusion is made in Section 4.

2. Field Equations of f (R, T) Gravity

The f (R, T) gravity field equations are based on the gravitational action [14]

S =
∫ √

−g d4x
(

1
16π

f (R, T) + Lm

)
, (1)

where f (R, T) is an arbitrary function of the Ricci scalar R and trace T of the energy
momentum tensor Tij, g is the determinant of the metric tensor gij, and Lm is the Lagrange
density of the matter. The variation of the gravitational action S in Equation (1) with respect
to (wrt) the metric gij gives the field equations of f (R, T) gravity:

fR(R, T)Rij −
1
2

f (R, T)gij − (∇i∇j − gij�) fR(R, T) = 8πTij − fT(R, T)(Tij + Θij) . (2)

Here ∇i is the covariant derivative, � ≡ ∇i∇i is the d’Alembertian operator and
fR(R, T) = ∂ f (R,T)

∂R , fT(R, T) = ∂ f (R,T)
∂T , Θij = gab δTab

δgij with

Tij = −
2√−g

δ(
√−gLm)

δgij = Lmgij − 2
δLm

δgij . (3)

When calculating the variation, Lm is taken to depend only on the metric tensor, and
not on its derivatives. If the matter assumed to fill the universe is considered to be a perfect
fluid, then the energy-momentum tensor attached to it is

Tij = (ρ + p)uiuj − pgij. (4)

where ρ and p is the energy density and pressure, respectively, and ui ( uiui = 1) is the four
velocity vector of the fluid. When the matter Lagrangian Lm = −p is taken, Θij becomes

Θij = −2Tij − pgij . (5)

Substituting this into Equation 2, the field equations take the form

fR(R, T)Rij −
1
2

f (R, T)gij − (∇i∇j − gij�) fR(R, T) = 8πTij + fT(R, T)(Tij + pgij) . (6)

Three different functional forms of the function f (R, T) are considered in the study of
Ref. [14]. In this study, we adopt the last of the forms (which are not usually chosen):

f (R, T) = f1(R) + f2(R) f3(T), (7)

where fi (i = 1, 2, 3.) are arbitrary functions of their arguments. In this case, the field
equations Equation (6) becomes:

[ f ′1(R) + f ′2(R) f3(T)]Rij −
1
2

f1(R)gij + [gij�−∇i∇j][ f ′1(R) + f ′2(R) f3(T)]

= [8π + f2(R) f ′3(T)]Tij + f2(R)[ f ′3(T)p +
1
2

f3(T)]gij. (8)
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Here a prime (′) denotes a derivative wrt to the argument of any fi function. Now, we
customize the functional form even more, taking it as

f1(R) + f2(R) f3(T) = R + λRT , (9)

to obtain

Rij −
1
2

gijR =
8π + λR
(1 + λT)

Tij −
λ

(1 + λT)
[gij� − ∇i∇j] T +

λR
(1 + λT)

pgij , (10)

where λ is a coupling constant. If λ = 0 is put into Equation (10), it is clearly seen that the
equations are reduced to the field equations of GR.

On the other hand, the usual conservation equation of GR is not valid in this theory,
but it takes the following form for Equation (9) [18]:

(8π + λR)ρ̇ + 3H(p + ρ) = −λR
2

(ρ̇− ṗ)− λṘ(ρ + p) (11)

where H = ȧ/a is the Hubble parameter.

3. Modified Field Equations in the flat FLRW Background

The homogeneous and isotropic flat FLRW metric is

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (12)

where a(t) is the time-dependent scale factor. For the flat FLRW model, the modified field
equations defined in Equation (10) lead to the following two independent equations

3H2 = 8πρ− 3λH(ρ̇− 3ṗ)− 3λH2(ρ− 3p)− 6λ(Ḣ + 2H2)(ρ + p) , (13)

2Ḣ + 3H2 = −8πp− λ(2Ḣ + 3H2)(ρ− 3p)− λ(T̈ − 2HṪ) , (14)

The trace of Equation (4) gives T = ρ− 3p, hence we have Ṫ = ρ̇− 3ṗ and T̈ = ρ̈− 3p̈.
Substituting these expressions into Equation (14), we get

2Ḣ + 3H2 = −8πptot = −8πp− λ(2Ḣ + 3H2)(ρ− 3p)− λ[ρ̈− 3p̈− 3H(ρ̇− 3ṗ)] , (15)

As can be seen, this last equation includes not only ρ and p, but also their first and
second derivatives wrt to time. To get rid of this mathematical difficulty, adopting the
barotropic EoS p = ωρ, we can rewrite Equation (11) as

ρ̇ = − 3H(1 + ω) + λṘ
8π + 1

2 λR(3−ω)
ρ , (16)

where ω is the EoS parameter. One more differentiation of the last equation wrt to time
gives

ρ̈ =

{
− 3Ḣ(1 + ω) + λR̈

8π + 1
2 λR(3−ω)

+
[3H(1 + ω) + λṘ(5−ω)][3H(1 + ω) + λṘ]

[8π + 1
2 λR(3−ω)]2

}
ρ . (17)

Here, R = −6(Ḣ + 2H2), Ṙ = −6(Ḧ + 4HḢ) and R̈ = −6(
...
H + 4Ḣ2 + 4HḦ), and the

Hubble parameter H is defined as

H =
ȧ
a

. (18)

Now, the field equations (13) and (15) become

3H2 = 8πρ− 3λ(1− 3ω)H[ρ̇ + Hρ]− 6λ(1 + ω)(Ḣ + 2H2)ρ , (19)
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2Ḣ + 3H2 = −8πωρ− λ(1− 3ω)[(2Ḣ + 3H2)ρ− 2Hρ̇ + ρ̈] , (20)

Using these two equations, one gets

2Ḣ = −8π(1 + ω)ρ− λ(1− 3ω)[(2Ḣ + 3H2)ρ− 2Hρ̇ + ρ̈]

+3λ(1− 3ω)H[ρ̇ + Hρ]− 6λ(1 + ω)(Ḣ + 2H2)ρ . (21)

The last equation is known as the generalized Raychaudhuri equation. One can
solve ρ from the generalized Raychaudhuri equation in terms of its first and second time
derivatives as

ρ =
1
4

[
2Ḣ − 5λH(1− 3w)ρ̇ + λ(1− 3w)ρ̈

−2π(1 + w) + λ(1 + 3w)Ḣ + 3λ(1 + w)H2

]
, (22)

Now, we need to know the expression of the Hubble parameter to obtain the explicit
form of ρ. For this task, we limit ourselves to the assumption of constant jerk parameter
(j = 1). The jerk parameter is basically the third derivative of the scale factor. Hence, our
assumption is

j =
...
a

aH3 = 1 , (23)

Note that in the ΛCDM model of GR, the jerk parameter j is constant and j = 1. The
integration of Equation (23) leads to two different scale factor solutions, one is power-law
and the other one is exponential [19], as follows:

a =

(
3
2

t + c
) 2

3
, (24)

a = αeβt , (25)

where c, α and β are constants of integration. The power-law solution (24) is important
for explaining the early universe, and the exponential solution (25) for the late universe.
Now, regarding Equation (18) for Hubble parameter and the definition of the deceleration
parameter q, we get:

q = −1− Ḣ
H2 . (26)

In the remainder of our work, we consider these two solutions separately.
The power-law solution Equation (24) yields

H =
2

3t + 2c
, q =

1
2

. (27)

The sign of the deceleration parameter is related to the shape of the expansion of the
universe. A positive q indicates a decelerated expansion, and a negative q indicates an
accelerated expansion. In this model, q equals 1/2, indicating that the power law solution
depicts a decelerated expanding universe model.

Using Equations (16) and (17), for the time derivatives of ρ, one can obtain the explicit
expression of ρ. Nevertheless, the expression is very lengthy and complicated. Therefore,
we consider Equation (16) with Equation (27)

ρ̇ = −
(

72
λ

(3 t + 2 c)3 + 6
1 + ω

3 t + 2 c

)(
8 π − 6

λ (3−ω)

(3 t + 2 c)2

)−1

ρ , (28)

On integrating we get:

ρ = ρ0(3 t + 2 c)
4

3−ω [4 π (3 t + 2 c)2 + 3 λ (−3 + w)]
−ω(w−2)+3+16 π

8π(−3+ω) , (29)
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where ρ0 is a constant of integration.
Equation (25), the exponential solution, yields:

H = β , q = −1 . (30)

Since q is negative, the exponential solution leads to the accelerated expansion model.
For this case, following the same procedure as in the previous model, Equation (16) becomes

ρ̇ = − 3β(1 + ω)

8π − 6λβ2(3−ω)
ρ , (31)

and its integration yields

ρ = ρ0 e
− 3

2
β (1+ω)t

3λ β2(ω−3)+4 π . (32)

Figure 1. Energy density ρ vs time t the left panel shows the density of the decelerating model, and
the rights panel shows the density of the accelerating model.

Figure 1 shows the temporal changes of the energy density of the decelerating (left
panel) model for the choise of the integrating constants c = 0, c1 = 0, ρ0 = 1 and of the
accelerating model (right panel) for the choise of the integrating constants β = 1 and ρ0 = 1
and for different values of the EoS parameter ω. We can see that ρ is positive valued for all
t. This is a necessary condition for the physicality of the model.

4. Conclusions

We have studied dark energy with j = 1 in f (R, T) = f1(R) + f2(R) f3(T) gravity. The
simpler form f2(R) f3(T) = λT is usually studied in the literature. It is possible to get a
viable model with a transition from deceleration to acceleration. We have not considered
graphs of the geometrical parameters or the pressure and equation of state, as well as
observational constraints. We will report on these aspects elsewhere.
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