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Abstract: We consider F(R) cosmological models with scalar fields that can be transformed into
two-field chiral cosmological models by the conformal metric transformation. Considering the R2

model in the spatially flat Friedmann–Lemaître–Robertson–Walker metric, we have found that the
Ricci scalar R can smoothly change its sign during the evolution if and only if the scalar field is
a phantom one. In the Bianchi I metric, the Ricci scalar cannot smoothly change its sign if the
corresponding solution is anisotropic at R = 0. The result in the Bianchi I metric does not depend
on the type of the scalar field. In the Bianchi I metric, the general solutions have been obtained both
for the R2 gravity model with a scalar field without a potential and for the corresponding two-field
chiral cosmological model.

Keywords: modified gravity; cosmology; exact solutions

1. Modified Gravity Models and GR Models with Scalar Fields

On the one hand, F(R) gravity generalizes the General Relativity (GR). On the other
hand, gravitational F(R) models can be considered as models with a nonminimally coupled
scalar field without kinetic term. These models can be transformed into GR models with a
standard minimally coupled scalar field by the conformal metric transformation. In other
words, these models in the Einstein frame are GR models with one minimally coupled
scalar field having a standard kinetic part. Note that such a transformation is possible
only if the first derivative F,R ≡ dF

dR > 0. A GR model with an ordinary scalar field
has is well-defined at any value of R, whereas for F(R) models, the possible domain of
values of R is restricted by requirement the effective gravitational constant should be
positive, hence, F,R > 0. It is interesting to analyze whether F,R can smoothly change its
sign during evolution or not. For models with a nonminimally coupled scalar field, this
problem has been discussed in [1]. For F(R) models it has been shown [2], that cosmological
solutions have anisotropic instabilities associated with the crossing of the barrier F,R(R) = 0.
In other words, the solutions in the the spatially flat Friedmann–Lemaître–Robertson–
Walker (FLRW) metric can be smooth, whereas solutions in the Bianchi I metric should
have singularities. These results have been obtained for F(R) models without scalar fields.

The simplest modifications of GR that allow to describe inflation are the R + R2

Starobinsky model [3] and the Higss-driven inflation [4]. These both models are in a good
agreement to the Planck measurements of the Cosmic Microwave Background (CMB) radia-
tion [5]. Inflationary R2 models gravity with the Higgs-like boson are actively investigated
in context of the possible production of primordial black holes [6–8]. Note that the R2 term
arises as a quantum correction in inflationary models with scalar fields [9–12].
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The Starobinsky inflationary model [3,13] includes both R2 term and the standard
Hilbert-Einstein term. Adding to this model the cosmological constant, one can obtain a
model with exact cosmological solutions [14]. The integrability of the Starobinsky model
as well as the integrability of the pure R2 model have been shown by the singularity
analysis [15,16]. These models pass the so-called weak Painlevé test [16,17]. At the same
time, exact cosmological solutions for the Starobinsky inflationary model are not known.

Most of the results of the explicit integration of cosmological models with scalar fields
are related to one-field cosmological models and the spatially flat FLRW metric [18–22].
Anisotropic cosmological solutions in F(R) gravity models have been actively investigated
in Refs. [23–26].

In our papers [27,28], we analyze F(R) gravity models with an additional scalar
field. Such models as well as models with multiple scalar fields nonminimally coupled
with gravity cannot be transformed to models with a few minimally coupled standard
scalar fields in the generic case [29]. After the metric transformation, models with a
nonstandard kinetic part of scalar field Lagrangian, the so-called chiral cosmological
models, are obtained [30–36]. We are looking for general solutions of evolutionary equations
in the pure R2 model with a scalar field in the FLRW and Bianchi I metrics, using the
corresponding chiral cosmological model. The absence of the scalar field potential in the
model considered allows us to get the behaviour of the Hubble parameter in the analytic
form, namely, in the form of hyperbolic tangent or cotangent. We also obtained scalar
fields in the analytic form [27,28]. The knowledge of this general solution allows us to
get the general solution of the initial F(R) gravity model with an additional standard or
phantom scalar field in the parametric time. After this, using the time transformation, we
get solutions in the cosmic time in quadratures. This method allows to find only solutions
with F,R > 0, so it is important to analyze the possibility the existence of solutions with F,R
changing its sign during the evolution.

2. Equations and Solutions in the Bianchi I and FLRW Metrics

Let us consider a pure R2 model, describing by the following action:

SR =
∫

d4x
√
−g
[

F0R2 −
εψ

2
gµν∇µψ∇νψ−V(ψ)

]
, (1)

where F0 > 0 is a constant, R is the Ricci scalar, ψ is a scalar field or a phantom scalar field
in dependence of the sign of εψ = ±1.

Let us consider the case of the Bianchi I metric with the following interval [23,26,37,38]:

ds2 = − dt 2 + a2(t)
[
e2β1(t) dx2

1 + e2β2(t) dx2
2 + e2β3(t) dx2

3

]
. (2)

The functions βi(t) satisfy the relation

β1(t) + β2(t) + β3(t) = 0. (3)

It is useful to introduce a shear,

σ2 ≡ β̇2
1 + β̇2

2 + β̇2
3 = 2

(
β̇2

1 + β̇1 β̇2 + β̇2
2

)
, (4)

that measures a total amount of anisotropy, “dots” denote derivatives with respect to time
t. The Ricci scalar is

R = σ2 + 6
(

Ḣ + 2H2
)

, H =
ȧ
a

. (5)

The evolution equations in the Bianchi I metric have the following form [26,28]:

4Hσ̇2 −
(

σ2
)2
− 4
(

2Ḣ + 3H2
)

σ2 + 24HḦ − 12Ḣ2 + 72H2Ḣ =
3εψ

2F0

(
ψ̇2 + 2V(ψ)

)
, (6)
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− σ̈2 − 2Hσ̇2 − 1
4

(
σ2
)2
−
(

2Ḣ + 3H2
)

σ2

+
(

6Ḣ + 12H2 + σ2
)

β̈i +
(

6Ḧ + 42HḢ + 36H3 + 3Hσ2 + σ̇2
)

β̇i

− 3
(

2
...
H + 12HḦ + 9Ḣ2 + 18H2Ḣ

)
=

εψ

8F0

(
ψ̇2 − 2V(ψ)

)
, i = 1, 2, 3.

(7)

If V(ψ) = 0, then we can eliminate ψ̇ and obtain the following equations

1
6

(
σ̈2 + 5Hσ̇2 − 2

(
2Ḣ + 3H2

)
σ2 −

(
σ2)2

2

)
+

...
H + 9HḦ + 3Ḣ2 + 18H2Ḣ = 0, (8)

σ̇2 +

(
3H +

Ṙ
R

)
σ2 = 0. (9)

Therefore, the evolution equations can be presented in the form of the following
fifth-order system [28]:

...
H =

1
2R

(
r1 − 2r2

[
2σ2 + R

])
, (10)

σ̈2 =
3
R

(
4σ2r2 − r1

)
, (11)

where

r1 =
(

σ̇2
)2

+
(

4Hσ2 + 6Ḧ + 36HḢ + 24H3
)

σ̇2 + 2
(

Ḣσ2 + 14HḦ + 14Ḣ2 + 36H2Ḣ
)

σ2,

r2 =
1

12

(
10Hσ̇2 − 4σ2

(
2Ḣ + 3H2

)
−
(

σ2
)2
)
+ 9HḦ + 3Ḣ2 + 18H2Ḣ .

Note that Equation (9) includes neither
...
H, nor σ̈2. The initial conditions for system (10)–

(11) should satisfy the relation (9).
One can see, that the right hand sides of Equations (10) and (11) are singular at R = 0

if σ2 6= 0. Therefore, we see essential difference between anisotropic solutions, for which
the sign of R is defined by the initial conditions and cannot be smoothly changed during
evolution, and isotropic solutions that are solutions in that spatially flat FLRW metric.
The existence of isotropic solutions that can smoothly change its sign during the evolution
has been proved in [27], where the following explicit example has been found.

In the spatially flat FLRW metric, all βi(t) ≡ 0 and, hence σ2(t) ≡ 0. At σ2(t) ≡ 0,
Equations (9) and (11) are satisfied. The Hubble parameter H(t) is a solution of Equation (10)
that has the following form:

...
H = r2 = 9HḦ + 3Ḣ2 + 18H2Ḣ . (12)

This equation is equivalent to the following equation:

(
Ḧ + 3HḢ

) d
dt

[
Ḣ2 − 2HḦ − 6H2Ḣ

]
=
(

Ḣ2 − 2HḦ − 6H2Ḣ
) d

dt
[
Ḧ + 3HḢ

]
. (13)

Equation (13) has been analyzed in detail in our paper [27], where two families of
solutions have been found. The Hubble parameter H(t) is either a solution of equation

Ḧ + 3HḢ = 0 , (14)

or a solution of equation
Ḣ2 − 2HḦ − 6H2Ḣ = 0 . (15)
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Equation (14) can be easily integrated and we get

2Ḣ + 3H2 = 2C,

where C is an integration constant.
If C < 0, then the following exact solution exists:

H(t) = −
√
−6C
3

tan

[√
−6C
2

(
t− t′

)]
, ψ(t) =

6C
√

2F0

cos2
(√

−3C
2 (t− t′)

) . (16)

Note that such solutions exist only if εψ = −1, because

ψ̇2 = − 72εψF0Ḣ2. (17)

So, the scalar field ψ is a phantom one. Substituting σ2 = 0 and H(t), given by (16) into
(5), we get that the scalar curvature R changes its sign at t = t′ ± π

3

√
−2/(3C). Therefore

the solution obtained has no analogue in the Einstein frame. It is one of main results of our
paper [27].

3. Conclusions

Modified gravitational models are being actively investigated both to describe the
accelerating expansion of the observed Universe and to link general relativity with quantum
theory due to adding of string theory inspired corrections [39,40]. It is an important issue
to obtain cosmological solutions for such types of models. The standard way to explore
F(R) gravity models and models with non-minimally coupled scalar field is to use the
conformal metric transformation and to analyze the corresponding GR model in the Einstein
frame [22,41]. However, one can lose some solutions by this way. For example, if F,R and,
therefore, the effective gravitational constant change their signs during the evolution,
then the corresponding smooth solutions for F(R) gravity models has no analogue in the
Einstein frame. It is important to check independently the existence of such solutions
analyzing evolution equations in the original frame.

We have found smooth particular solutions, in particular, solution (16), which have
no analogue in the Einstein frame, because the Ricci scalar R changes its sign during
the evolution. Note that these solutions do not admit any amount of anisotropy. In the
Bianchi I metric, the evolution Equations (10) and (11) have singularities at R = 0 for
anisotropic solutions. So, for anisotropic solutions, the Ricci scalar R does not change its
sign during evolution.

We have found general solutions in the spatially flat FLRW and Bianchi I metrics both
for the R2 gravity model with an additional scalar field and for the corresponding two-field
chiral cosmological model [27,28]. The cosmic time in the Einstein frame corresponds to a
parametric time in the Jordan frame, so, the consideration of integrable chiral cosmolog-
ical models is useful to get the general solutions for the corresponding modified gravity
models in parametric time. Solutions in the cosmic time for such models can be found
in quadratures.

The proposed method allows to find general solutions for different modified gravity
cosmological models that can be transformed into chiral cosmological models.

Funding: S.Y.V. was partially funded by the Russian Foundation for Basic Research grant No. 20-02-
00411.
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