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Abstract: This paper presents a theoretical calculation of the vacuum energy density by summing the
contributions of all quantum fields’ vacuum states which turns out to indicate that there seems to
be a missing bosonic contribution in order to match the predictions of current cosmological models
and all observational data to date. The basis for this calculation is a new Zeta function regularization
method used to tame the infinities present in the improper integrals of power functions. The paper
also makes a few other contributions in the area of vacuum energy.
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1. Introduction

Much has been written on the Cosmological Constant (CC) problem and the vacuum
catastrophe where we have the worst discrepancy between theory and measurement of
about a factor of more than 120 orders of magnitude, refer to [1,2] for a pedagogical
overview. In this paper, we improve this discrepancy by more than half which still remains
very high, but also propose 4 solutions, one of which is an exciting prediction that can
help resolve the vacuum catastrophe. We attack the heart of the problem which is the
divergent sums and integrals that have also plagued many other areas of Quantum Field
Theory (QFT), using as our tool, a new Zeta regularization technique to tame these infinities,
without the use of an arbitrary momentum cutoff or renormalization parameter. Refer also
to [3] for a pedagogical overview of the Zeta function and the associated Zeta function
regularization techniques with applications to physics.

2. Methods

The vacuum (zero-point) energy of a free (non-interacting) quantum field in flat
Minkowski spacetime, can be modeled as the sum of zero-point energies of a set of infinite
number of quantum harmonic oscillators, one for each normal mode and given simply
as +∑k

1
2 h̄ωk for bosonic fields and −∑k

1
2 h̄ωk for fermionic fields [4,5], and where 1

2 h̄ωk

represents the eigenvalues of the free Hamiltonian, ωk =
√

m2 + k2 in natural units, k is
the wave number (with units of 1/length), m is the particle mass associated with a specific
field (assumed to be constant and not running), and h̄ is the reduced Planck constant. The
negative sign, in front of the infinite sum, is due to the negative energy solutions allowed
in the fermionic fields which must follow the Pauli Exclusion principle by obeying the
canonical anti-commutation relations.

Consequently, the vacuum energy density (VED) of a single state of a given field (i.e.
energy E per volume V) can be derived [4,5] (section 10.8) to be

ρ =
E
V

= ± 1
V ∑

k

1
2

h̄ωk = ... = ± 1
4π2

∫ ∞

0

√
m2 + k2k2dk (1)
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and by reintroducing h̄ and c in (1) and considering all states of a field, the VED of a field is
given by

ρ = g
1

4π2

∫ ∞

0

√
(mc2)2 + (h̄kc)2k2dk (2)

where g is the degeneracy factor which includes, a sign factor (−1)2j, a spin factor 2j + 1
for massive fields and 2 for massless fields, a factor of 3 for fields with color charge, and a
factor of 2 for fields that have an antiparticle distinct from their particle. Note also that c is
the speed of light in vacuum and j is the particle spin.
The most straight forward way of regularizing the integral in (1),(2) is to introduce an
Ultraviolet (UV) momentum curoff K after which the integral can be evaluated to be

∫ K

0

√
m2 + k2k2dk =

K4

4
+

m2K2

4
+

m4

32
− m4

16
log
( m2

4K2

)
+ O

( 1
K2

)
(3)

Now by taking the UV cutoff to be at the Planck scale, K = KPL =
√

h̄c/G ≈ 1019 GeV
(where G is the gravitational constant), the dominant term in (3) which is quartic in momen-
tum cutoff gives a value of order 1076 GeV4 which when compared with the observational
value of order 10−47 GeV4 [8], is off by 123 orders of magnitude! This is the origin of the
famous ≈120 order of magnitude discrepancy cited in the literature [1,2,5].

It’s to be noted that the regularization in (3) was first introduced by Pauli [4] who also
provided the corresponding 3 polynomial-in-mass and 1 logarithmic-in-mass conditions
needed to be met in order to obtain a vanishing VED:

∑
i

gim4
i = 0 ∑

i
gim2

i = 0 ∑
i

gi = 0 ∑
i

gim4
i log

(m2
i

µ2

)
= 0 (4)

where index i represents different particle species and µ is an arbitrary parameter. We will
show that using our zeta regularization method, we can simplify this by eliminating 3 of
the conditions, leaving only the key quartic polynomial-in-mass condition.

We begin our approach by writing Equation (2) as

ρ = g
h̄c

4π2

∫ ∞

0

√(mc
h̄

)2
+ k2k2dk = b

∫ ∞

0

√
a2 + k2k2dk = b

∫ ∞

0
a

√
1 +

( k
a

)2
k2dk (5)

where a = mc
h̄ (with units of 1/length) and b = g h̄c

4π2 . Now, by introducing a dimensionless
change of variable, x = k/a and dx = dk/a, we can turn the integral in (5) into a ‘pure’
integral and hence ready for Zeta function regularization:

ρ = b
∫ ∞

0
a
√

1 + x2(ax)2adx = a4b
∫ ∞

0

√
1 + x2x2dx (6)

In order to apply the Zeta regularization results obtained in appendix A, we need to
perform a Maclaurin series expansion of the integrand in equation (6) with respect to the
dimensionless parameter x. Let’s define

f (x) = x2
√

1 + x2 (7)

Now the Maclaurin series expansion of (7) can be obtained as

f (x) = x2 +
x4

2
− x6

8
+

x8

16
− 5x10

128
+

7x12

256
− 21x14

1024
+ O(x16) (8)
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At first glance, when substituting (8) as the integrand in (6), the integral in (6) looks highly
divergent, essentially a sum of divergent even powered polynomial integrals. However, fi-
nite values for these integrals can be assigned using a new Zeta regularization technqiue (see
appendix A). These integral values are

∫ ∞
0 x2dx = − 1

12 ,
∫ ∞

0 x4dx = − 1
30 ,
∫ ∞

0 x6dx = − 1
56 ,∫ ∞

0 x8dx = − 1
90 ,
∫ ∞

0 x10dx = − 1
132 ,

∫ ∞
0 x12dx = − 1

182 , etc. A finite zeta-regularized value
can hence be obtained for the divergent integral in (6) from the converging series below
calculated upto the first 15 terms

∫ ∞

0

√
1 + x2x2dx = − 1

12
− 1

2
1

30
+

1
8

1
56
− 1

16
1

90
+

5
128

1
132
− 7

256
1

182
+ ... +

185725
33554432

1
992

= −0.09826 (9)

and so we can get the following simple expression for (6)

ρ = −0.09826 a4b = −g
0.09826 m4c5

4π2h̄3 = −g
0.002489 m4c5

h̄3 ≡ −0.002489 g m4 (Natural Units)

(10)

Now, the sign of the vacuum energy density in (2) is represented by the (−1)2j sign factor
which dictates that the vacuum energy contribution is positive for bosonic fields (e.g. j = 1)
and negative for fermionic fields (i.e. j = 1/2), but only if one assumes that the integral
in (2) is a positive number tending to plus infinity (i.e. we obtain a positive value for the
integral if we use an Ultraviolet (UV) cut-off which is what is typically done in literature).
However, this is not what we obtain using our Zeta regularization technique where we find
and assign a negative value to the otherwise divergent integral

∫ ∞
0

√
1 + x2x2dx in (6), and

by doing so we reverse the vacuum energy density signs for the fermionic fields (positive)
and bosonic fields (negative). This is indeed an unexpected turn of events!

3. Results

The vacuum energy density contributions of the relativistic massless photon and
gluon particles are considered to be zero and hence will not be further considered in the
calculations that follows. This can also be concluded from the equation of state for a
relativistic particle [6] (page 8). The total theoretical value of the vacuum energy density
can be obtained by summing over the free massive quantum fields of the Standard Model
(represented by the index i), with their associated particle masses [7]:

ρtotal = ∑
i

ρi = −0.002489 ∑
i

gim4
i (11)

from which we can clearly conclude now that the only condition required to have a vanish-
ing ρtotal is the first one in (4), ∑i gim4

i = 0.

The vacuum energy density values are tabulated below where the leptons (x6) and quarks
(x6) masses are lumped together. We note that the total theoretical value of the vacuum
energy density does not diverge, is positive, but still quite large. In fact, we obtain a positive
value of ρtotal = 5.93× 1044 J/m3 (= 2.84× 107 GeV4) and a corresponding CC value of
Λ = 4.84× 10−12 eV2 using [2] (Eqn 14), ρvac =

Λ
8πG .

This result is a significant improvement over the widely reported theoretical estimate
which is about 120 orders of magnitude higher compared with the value obtained from the
large scale cosmological observations of approximately 5.26× 10−10 J/m3 = 2.52× 10−47

GeV4 (Λ = (4.24± 0.11)× 10−66 eV2) [8].
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Fields Degeneracy factor g
sign × spin × color × antiparticle Mass (eV/c2) ρ (J/m3) ρ (GeV4)

Quarks (x 6): fermionic −1× (2×1/2+1) × 3 × 2 = −12 178.31× 109 +6.29× 1044 +3.02× 107

Leptons (x 6): fermionic −1× (2×1/2+1) × 1 × 2 = −4 1.90× 109 +2.70× 1036 +0.13
W: bosonic 1 × (2×1+1) × 1 × 2 = 6 80.38× 109 −1.30× 1043 −6.23× 105

Z : bosonic 1 × (2×1+1) × 1 × 1 = 3 91.19× 109 −1.08× 1043 −5.16× 105

Higgs : bosonic 1 × (2×0+1) × 1 × 1 = 1 125.10× 109 −1.27× 1043 −6.10× 105

Total +5.93× 1044 +2.84× 107

4. Conclusion

In summary, we highlight that the results presented in this paper help improve the
vacuum catastrophe or CC problem by reducing the widely reported discrepancy of more
than 120 orders of magnitude to about 55, without requiring the introduction of any arbi-
trary cutoff or renormalization parameter which is typically done in literature. Therefore,
this approach allows for the contribution of all particle momentums from 0 to infinity
which one could argue will maintain any symmetry that may be present in the dynamics
of VED and which would be otherwise lost when an arbitrary parameter is introduced.
It is however clear that there is not yet a convincing resolution to this long standing CC
problem. Of course, VED contributions would cancel out to zero in a universe with exact
supersymmetry because of the opposite signs between boson and fermion contributions in
(1). However, there is no evidence of any such supersymmetry in our universe and no hint
of any supersymmetric particle at the energy scales probed so far at the LHC.

We do propose 4 possible reasons to explain this new discrepancy, that still exists be-
tween our theoretical result and the observational value, as being wholly or partly due to:

1) Considering carefully the order of magnitude of our newly calculated VED (1044 J/m3 or
107 GeV4), we make a startling observation that we have indeed obtained a value in the
right energy scale which is suggestive of at least one missing heavy boson (e.g. a heavy
cousin of the Higgs boson). For example, if we assume a scalar boson (with g = 1), then
using (10), its mass would be about 327 GeV/c2. If we assume a vector boson (e.g. say
g = 3 for a Z-prime boson), then its mass would be about 247 GeV/c2. Of course, it is
entirely possible that we are also missing a massive fermionic (dark matter) particle which,
if detected and of consequential mass, would further push up the mass of the missing
boson;
2) the contribution of the gravitational field or the effect of spacetime curvature on VED;
3) the effect of interacting quantum fields on VED;
4) the effect of running mass of particles on VED.

In conclusion, we list the key contributions of the paper:

1) VED is finite without the need of an arbitrary UV momentum cut-off or a renormalization
parameter, and is found to have a simple closed-form (10), quartic in particle mass;
2) Only one of Pauli’s 4 conditions is necessary and sufficient to zero out the VED; and
3) Vacuum energy contributions of fermionic fields are positive and those of bosonic fields
are negative.

Acknowledgment: The author would like to thank Ervin Goldfain, Vesselin Gueorguiev,
Tom Lawrence and Sonali Tamhankar for thought-provoking conversations and comments
on the topics in this paper.
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Appendix E Improper integrals of power functions

Let’s define the µ function as the improper integral of a power function with exponent
p

µ(p) =
∫ ∞

0
xpdx (A12)

with p ∈ N0, where N0 = {0, 1, 2, · · · }.

The mu function can be interpreted as the natural extension of the Riemann zeta
function where the discrete sum is replaced by a continuous integral. The above improper
integral can be equivalently written as the following infinite series by splitting the limits of
integration into successive integer numbers. That is

µ(p) =
∞

∑
n=1

∆(p, n) (A13a)

where
∆(p, n) =

∫ n

n−1
xpdx =

1
p + 1

(
np+1 − (n− 1)p+1

)
(A13b)

is the definite integral of the power function over limits n− 1 and n. In what follows, we
will show that the divergent series in the RHS of (A13a) can converge to a finite result!

One can write the binomial polynomial expansion of (n− 1)p+1 in (A13b) as [9] (Eqn
2)

(n− 1)p+1 =
p+1

∑
k=0

(
p + 1

k

)
nk(−1)p+1−k, (A14a)

where (
t
s

)
=

t!
s!(t− s)!

(A14b)

is the binomial coefficient, with (t
t) = (t

0) = 1. Substituting (A14a) into (A13b) gives

∆(p, n) =
1

p + 1

(
np+1 −

p+1

∑
k=0

(
p + 1

k

)
nk(−1)p+1−k

)
=

1
p + 1

(
np+1 −

p

∑
k=0

(
p + 1

k

)
nk(−1)p−k(−1)1 −

(
p + 1
p + 1

)
np+1(−1)p+1−(p+1)

)
=

1
p + 1

p

∑
k=0

(
p + 1

k

)
nk(−1)p−k (A15)

Thus (A13a) can be written as

µ(p) =
1

p + 1

∞

∑
n=1

p

∑
k=0

(
p + 1

k

)
(−1)p−knk =

1
p + 1

( p

∑
k=0

(
p + 1

k

)
(−1)p−k

∞

∑
n=1

nk
)

(A16)

The last summation in RHS of (A16) can be written in terms of the Reimann zeta function
ζ(−k) = ∑∞

n=1 nk and therefore we arrive at

µ(p) =
1

p + 1

p

∑
k=0

(
p + 1

k

)
(−1)p−kζ(−k) ∀p ∈ N0 (A17)

For integers k ≥ 0, the zeta function is related to Bernoulli numbers by [10] (Eqn 66)

ζ(−k) = (−1)k Bk+1
k + 1

(A18)
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Moreover, from definition (A14b), one can verify that the successive binomial coefficients
hold the following useful identity(

p + 1
k

)
=

k + 1
p + 2

(
p + 2
k + 1

)
(A19)

Finally, upon substituting the relevant terms from (A18) and (A19) into (A17), one can
equivalently rewrite the latter equation in the following simple form

µ(p) =
1

p + 1

p

∑
k=0

k + 1
p + 2

(
p + 2
k + 1

)
(−1)p−k(−1)k Bk+1

k + 1
=

(−1)p

(p + 1)(p + 2)

p

∑
k=0

(
p + 2
k + 1

)
Bk+1

=
(−1)p

(p + 1)(p + 2)

p+1

∑
k=1

(
p + 2

k

)
Bk ∀p ∈ N0 (A20)

Furthermore, the Bernoulli numbers satisfy the following property [11] (Eqn 34)

l−1

∑
k=0

(
l
k

)
Bk = 0 (A21)

Given that B0 = 1 and using a change of variable l = p + 2, one can equivalently write
(A21) as

p+1

∑
k=1

(
p + 2

k

)
Bk +

(
p + 2

0

)
B0 = 0

p+1

∑
k=1

(
p + 2

k

)
Bk = −1 (A22)

Finally upon substituting (A22) in (A20), we arrive at the explicit expression of the µ
function

µ(p) =
∫ ∞

0
xpdx ac

=
(−1)p+1

(p + 1)(p + 2)
∀p ∈ N0 (A23)

This surprising and simple finite solution should be viewed as an alternative, that may
be useful in certain cases, to an otherwise divergent result! Note that the = sign in (A23)
should be considered to be only meaningful in the sense of analytical continuation (ac).
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