The Low Energy Module (LEM): Development of a CubeSat spectrometer for sub-MeV particles and Gamma Ray Burst detection.

<u>Riccardo Nicolaidis</u>, Francesco Nozzoli, Giancarlo Pepponi, Pierluigi Bellutti, Evgeny Demenev, Francesco Maria Follega, Roberto Iuppa, Veronica Vilona

2nd Electronic Conference on Universe, 16 Feb-2 Mar 2023

Physics Goals

Statistical correlation between PBs and seismic events

- <u>Time correlation</u> between Particle Bursts (PBs) and earthquakes (M > 5) in 13 years
- Correlation found observing electrons with energy in [0.3, 2.5] MeV (NOAA MEPED instr.)
- <u>PBs mostly generated by indonesian</u> earthquakes but detected near SAA

Space Weather investigation and GRB monitoring

CME example: Courtesy of NASA (SOHO)

- Severe space weather storms could cause <u>power outages</u> and <u>telecommunication alterations</u>
- the construction of new instruments to monitor and (possibly) to predict the effects of solar activity on Earth is crucial.
- Thanks to a CdZnTe mini-calorimeter, the LEM spectrometer also allows photon detection in the sub-MeV range, joining the quest for the investigation of the nature of Gamma Ray Bursts

https://heasarc.gsfc.nasa.gov/docs/cgro/batse/

R. Nicolaidis et al.

The Low Energy Module: Geometry and Geant4 simulation

Past detectors design? Not suitable

doi:10.1016/j.pss.2005.10.019

DEMETER - IDP

- Light (~ 500 g)
- 1 direction monitored
- FOV 26°
- Electrons [0.07, 0.8] MeV
- No PID

DOI 10.1007/s11214-012-9913-1

RAD - Curiosity (Mars)

- Standard <u>tracking</u> (<u>multiple scattering</u>)
- poor ang.res. @ Low E
- Csl scintillators hygroscopic, fragile.

HEPP-L (CSES)

- bulky collimators
- Electrons [0.1, 3] MeV
- Protons [2, 20] MeV
- Only 9 directions monitored at same time

New LEM geometry concept Aluminium mask (Thickness 0.8 cm) Shielding of Trapped Electrons BKG Active collimator (plastic scintillator, about 1 cm thick) 16 independent modules for PID Passivated Implanted Planar Silicon detectors : 100 um CZT detector : 1 mm Lateral plastic scintillator **veto** 1 bottom plastic scintillator **veto** 16 different Within 1U CubeSat frame (10x10x10 cm³)! directions

The detection concept

R. Nicolaidis et al.

Aluminium shielding of trapped electrons

Energy [MeV]	Differential flux [MeV ⁻¹ cm ⁻² s ⁻¹]	Integral flux [cm ⁻² s ⁻¹]
0,04	1,96E+06	2,44E+05
0,1	1,25E+06	1,51E+05
0,25	3,20E+05	4,48E+04
0,5	4,35E+04	1,15E+04
0,75	1,32E+04	5,56E+03
1	6,21E+03	3,38E+03
1,5	2,44E+03	1,46E+03
2	1,03E+03	6,29E+02
2,5	4,99E+02	2,82E+02
3	2,09E+02	1,09E+02
3,5	8,56E+01	4,19E+01
4	3,23E+01	1,41E+01
4,5	1,05E+01	4,17E+00
5	3,06E+00	1,14E+00
5,5	6,87E-01	2,41E-01
6	1,09E-01	3,17E-02
6,5	1,57E-02	0,00E+00
Table 3.1-1 Trapped electron spectrum Courtesy of TAS-I		

- ~0.5 cm of Aluminium stop e- with energy below 3.5 MeV
- Surviving flux ~20 cm⁻² s⁻¹
- Expected Veto rate ~10 kHz
- Expected Event rate ~1-10 kHz (trapped electrons)

Al -> Shielding trapped electrons

R. Nicolaidis et al.

Angular Resolution

- Large FOV (60° x 60°)
- Resolution of about ~7 degs (rms)

R. Nicolaidis et al.

Study of the Energy Deposition

R. Nicolaidis et al.

ΔE : Si 100 μm | E : Si 500 μm

ΔE : Si 100 μm | E : CZT 1 mm

R. Nicolaidis et al.

Effective area for gamma: Silicon vs. CdZnTe (CZT)

CZT properties:

Density 5.7 g cm⁻³ Z(**Cd**) = **48** Z(**Te**) = **52**

High voltage required

Detection Yield for Silicon is low

Improved Detection Yield for photons with CZT!!

R. Nicolaidis et al.

Silicon detector characterisation at TIFPA (Trento INFN)

R. Nicolaidis et al.

Passivated Implanted Planar Silicon

- Particle generates **electron-hole** pairs
- Electron hole pairs separated by electric field
- Charge collected proportional to energy

R. Nicolaidis et al.

R. Nicolaidis et al.

The Low Energy Module: ECU23

16

Calibration with muons

- MIP atmospheric muons
- MPV measurement :

 $K_{cal} = (37.2 \pm 0.1^{\rm stat} \pm 0.3^{\rm syst}) \; \mathrm{mV/MeV}$

- Design performance is verified

Conclusions and outlooks

- PIPS characterised and Monte-Carlo simulation validated
- <u>Current efforts</u> on the development of **read-out for 300 um PIPS** (Mirion)
- Future efforts on the testing/characterisation of Ion implanted Silicon
 Detectors 100 um thick and CZT detectors
- LEM is under construction ...

Test on sensor prototypes are ongoing at INFN-TIFPA and FBK laboratories

Backup

R. Nicolaidis et al.

Characterisation with highly ionising particles

Alpha <u>Stopping power</u> is ~ 500 times larger than MIPs Important to verify if the detector's response is linear with the energy deposition per unit length

Characterisation with alpha particles

- 5.4-5.44-5.49 MeV α produced by ²⁴¹Am decay
- Energy loss: ~ <u>1 MeV/cm in Air</u> (degraded to 2-3 MeV)
- Measured energy distributions for different path lengths
- Estimation of $\partial V/\partial x$, proportional to $\partial E/\partial x$

Characterisation with alpha particles

- Experimental data (*) compared with Monte-Carlo simulations (GEANT4)
- K_{cal} in **agreement** with previous calibration (37 mV/MeV)

R. Nicolaidis et al.