
Dark Matter Stimulated Double Beta Decay

F.Nozzoli - C.Cernetti INFN/TIFPA - Trento University

Trento Institute for Fundamental Physics and Applications

2nd Electronic Conference on Universe - ECU2023

1

Seesaw models and small ν mass

Neutrino oscillations imply that neutrinos have a mass.

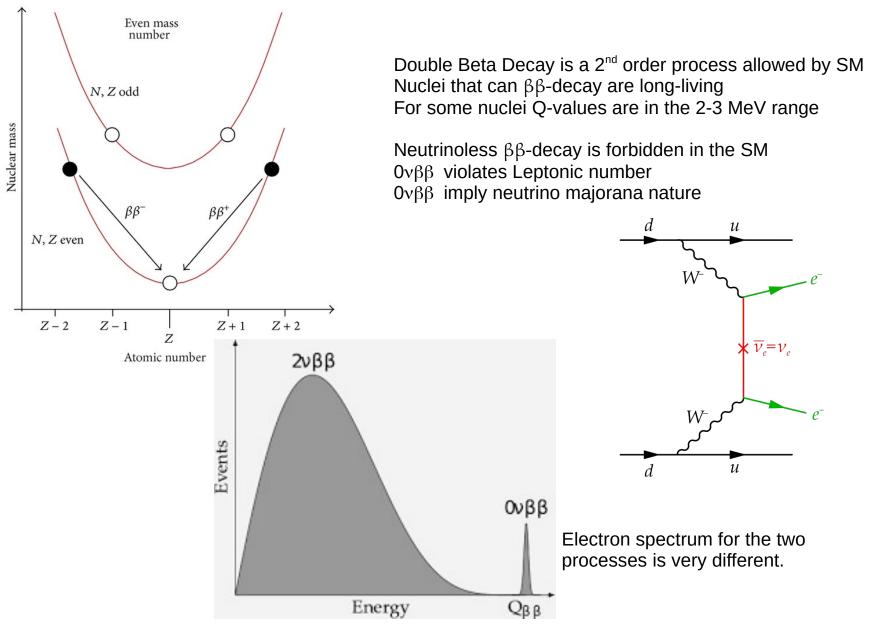
To accommodate a neutrino mass, new fermions N_R should exist

 $\rm N_{_R}$ are singlets of the SM gauge groups

Beyond-SM Lagrangian terms can be considered (Seesaw models)

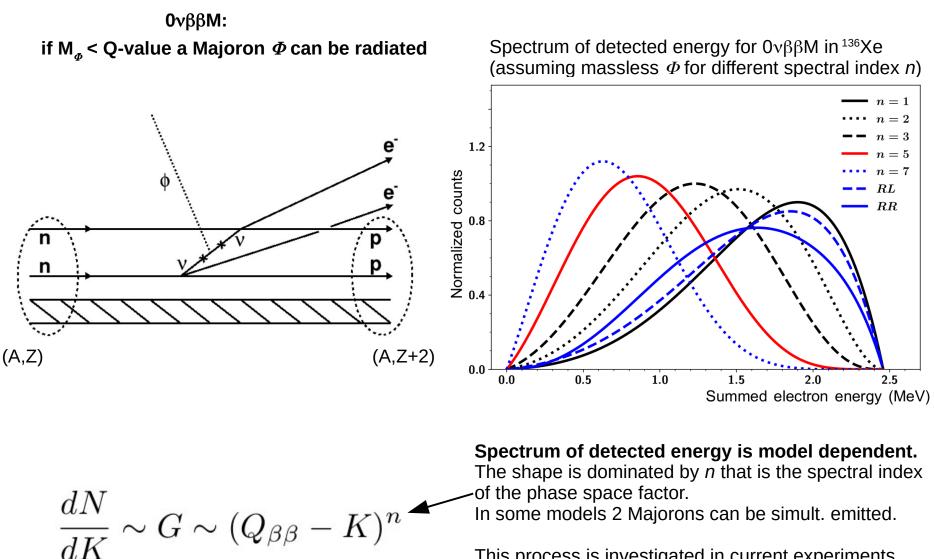
$$\mathcal{L} = \mathcal{L}_{S\mathcal{M}} + \begin{bmatrix} \overline{N_{R}} & \text{Minetic term} & \text{Majoron} \varphi \text{ kinetic and potential terms} \\ \hline \left[\overline{N_{R}} \gamma^{\mu} \partial_{\mu} N_{R} \right] + \left[\left(\partial_{\mu} \phi \right)^{\dagger} \left(\partial^{\mu} \phi \right) - V(\phi) \right] \\ \hline \left[- y_{j} \overline{l}_{L}^{j} H N_{R} \right] - \left[\frac{\lambda}{2} \overline{N_{R}}^{c} \phi N_{R} + \right] h.c. \\ \text{Majoron vev provides} \\ \text{Dirac mass } m \text{ to } \nu \\ M^{\text{D+Mj}} = \begin{pmatrix} 0 & m \\ m & M \end{pmatrix}; \ \nu_{L}' = \begin{pmatrix} \nu_{L} \\ (N_{R})^{c} \end{pmatrix} \\ m_{1} = -\frac{M}{2} + \frac{1}{2} \sqrt{M^{2} + 4 m^{2}} \simeq \frac{m^{2}}{M} \ll m \text{ Light "active" } \nu \\ m_{2} = \frac{M}{2} + \frac{1}{2} \sqrt{M^{2} + 4 m^{2}} \simeq M \\ \text{Heavy "sterile" } \nu \\ \end{bmatrix}$$

-Seesaw naturally provides the smallness of active neutrino masses


-Seesaw could provide a mechanism for Baryon asymmetry in the Universe

-Seesaw can accommodate two possible DM candidates: the Majoron and the Sterile Neutrino

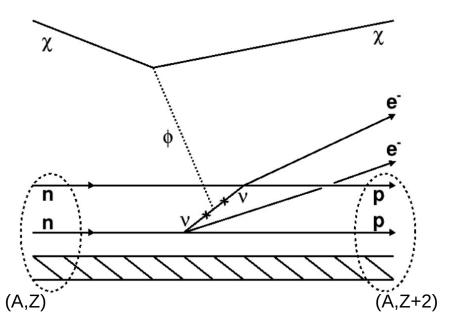
-Neutrinoless Double Beta Decay $0\nu\beta\beta\,$ is allowed by this model


F.Nozzoli - C.Cernetti, INFN/TIFPA & UniTN, ECU2023

(neutrinoless-) Double Beta Decay

F.Nozzoli - C.Cernetti, INFN/TIFPA & UniTN, ECU2023

$\mathbf{0}_{\mathbf{V}\beta\beta}\mathbf{M}$ neutrinoless $\beta\beta$ decay with Majoron emission

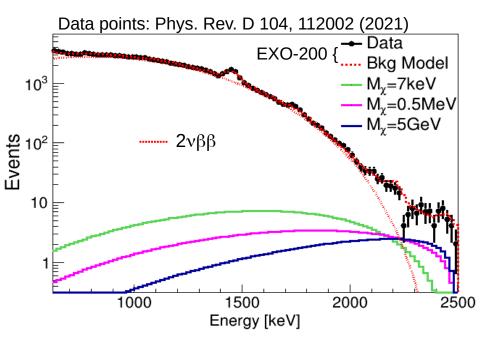


In some models 2 Majorons can be simult. emitted.

This process is investigated in current experiments, exp. lower limits to partial half-lifes exist.

(DM-0 $\nu\beta\beta$) DM stimulated neutrinoless $\beta\beta$ decay

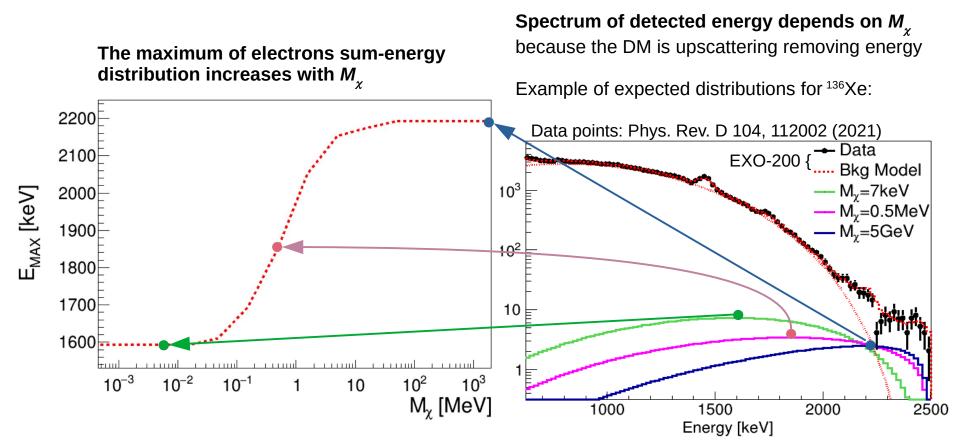
A sterile neutrino or other DM particle χ could stimulate $0\nu\beta\beta\,$ decay mediated by a Majoron


Also other diagrams are possible in principle, moreover other Majorana fermion DM candidates beyond sterile neutrino are also possible (e.g. SUSY Neutralino, Axino, Gravitino ...)

 T_{ff} is model dependent: we assume a constant value and we focus on the phase space factor.

$$d\Gamma = \frac{|T_{fi}|^2}{4\pi^2\hbar} \frac{d^3P_1}{(2\pi)^3} \frac{d^3P_2}{(2\pi)^3} \frac{d^3P_{\chi}}{(2\pi)^3} \delta(K_1 + K_2 + K_{\chi} - Q)$$

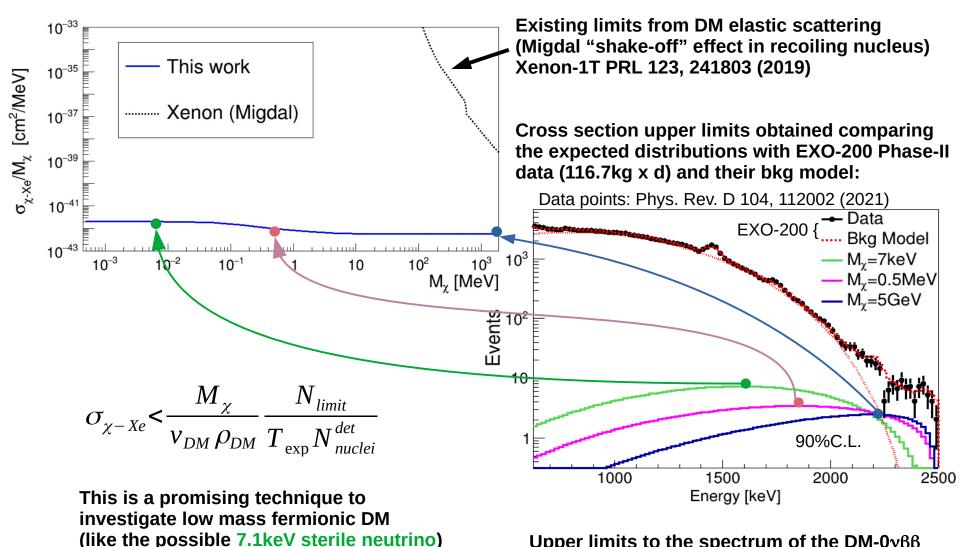
Spectrum of detected energy depends on M_{χ} because the DM is upscattering removing energy


Example of expected distributions for ¹³⁶Xe:

for $M_{\chi} << m_e$ the spectrum is similar to n=2 $0\nu\beta\beta M$ for $M_{\chi} = m_e$ the spectrum is similar to n=1 $0\nu\beta\beta M$ for $M_{\chi} >> m_e$ the spectrum is harder than $0\nu\beta\beta M$ The spectrum is very different from $0\nu\beta\beta$ and $2\nu\beta\beta$

F.Nozzoli - C.Cernetti, INFN/TIFPA & UniTN, ECU2023

(DM-0 $\nu\beta\beta$) sensibility to DM mass measurement

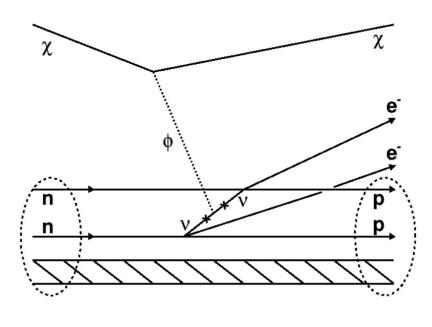


-A direct measurement of M_{χ} could be feasible (in principle) for 100keV – 10MeV DM particles

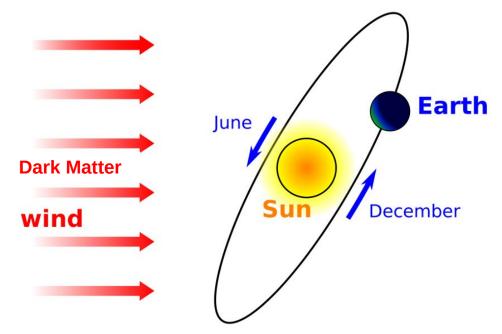
-Also DM with very low mass could be detected

for $M_{\chi} << m_e$ the spectrum is similar to n=2 $0\nu\beta\beta M$ for $M_{\chi} = m_e$ the spectrum is similar to n=1 $0\nu\beta\beta M$ for $M_{\chi} >> m_e$ the spectrum is harder than $0\nu\beta\beta M$ The spectrum is very different from $0\nu\beta\beta$ and $2\nu\beta\beta$

(DM-0 $\nu\beta\beta$) DM-nucleus scattering cross-section limits



Upper limits to the spectrum of the DM-0 $\nu\beta\beta$ are very similar to the one for n=1,2 0 $\nu\beta\beta$ M


F.Nozzoli - C.Cernetti, INFN/TIFPA & UniTN, ECU2023

Comparison and disentangle DM-0 $\nu\beta\beta$ from 0 $\nu\beta\beta$ M

- $0\nu\beta\beta M$ decay requires light Majorons -DM- $0\nu\beta\beta$ is possible also for heavy Majorons

-0v $\beta\beta M$ decay is not dependent on DM flux -for DM-0v $\beta\beta$ the annual modulation is expected

CONCLUSIONS:

- A new signature to investigate light fermionic DM is proposed
- A detailed analysis in terms of neutrino & Majoron couplings will be addressed in future works
- Thank you for the attention